000888293 001__ 888293 000888293 005__ 20240712112833.0 000888293 0247_ $$2doi$$a10.1016/j.elecom.2020.106865 000888293 0247_ $$2ISSN$$a1388-2481 000888293 0247_ $$2ISSN$$a1873-1902 000888293 0247_ $$2Handle$$a2128/26322 000888293 0247_ $$2altmetric$$aaltmetric:95678729 000888293 0247_ $$2WOS$$aWOS:000605594000014 000888293 037__ $$aFZJ-2020-04819 000888293 041__ $$aEnglish 000888293 082__ $$a540 000888293 1001_ $$0P:(DE-Juel1)176976$$aChen, Zhiqiang$$b0$$ufzj 000888293 245__ $$aOn the reaction rate distribution in porous electrodes 000888293 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000888293 3367_ $$2DRIVER$$aarticle 000888293 3367_ $$2DataCite$$aOutput Types/Journal article 000888293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606749378_8846 000888293 3367_ $$2BibTeX$$aARTICLE 000888293 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888293 3367_ $$00$$2EndNote$$aJournal Article 000888293 520__ $$aReaction rate distribution across porous electrodes in Li-ion battery applications largely determines the overall battery performance. In the present work, expressions for the reaction rate distribution across porous electrodes are analytically derived and analyzed for small current and short time applications. The dependency on the effective ionic and electronic conductivities is systematically investigated and discussed. It is found that in the case of equal effective electronic and ionic conductivities, the reaction rate distribution is symmetric around the electrode mid-point. Small conductivities induce the charge-transfer reaction to preferentially occur at the interface of the current collector and separator, while high conductivities make the reaction rate distribution uniform across the electrode thickness. In the case of unequal conductivities, a decrease in the effective electronic conductivity shifts the reaction rate distribution towards the electrode/current collector interface. In contrast, a decrease in the effective ionic conductivity shifts the reaction rate distribution towards the electrode/separator interface. It is also found that the reaction rate distribution shows saturating behavior when the effective electronic or ionic conductivity grows infinitely. A further increase in the effective ionic or electronic conductivity does not lead to any further reaction rate distribution changes. 000888293 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0 000888293 588__ $$aDataset connected to CrossRef 000888293 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b1$$ufzj 000888293 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj 000888293 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3$$eCorresponding author$$ufzj 000888293 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2020.106865$$gVol. 121, p. 106865 -$$p106865 -$$tElectrochemistry communications$$v121$$x1388-2481$$y2020 000888293 8564_ $$uhttps://juser.fz-juelich.de/record/888293/files/Zhiqiang%20Chen%2C%20Modeling%20reation%20rate%20distribution%20porous%20electrodes%2C%20EC%202020.pdf$$yOpenAccess 000888293 909CO $$ooai:juser.fz-juelich.de:888293$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176976$$aForschungszentrum Jülich$$b0$$kFZJ 000888293 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176976$$a Eindhoven University$$b0 000888293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b1$$kFZJ 000888293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ 000888293 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH 000888293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ 000888293 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a Eindhoven University$$b3 000888293 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a University of Technology, Sydney$$b3 000888293 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000888293 9141_ $$y2020 000888293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05 000888293 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000888293 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888293 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHEM COMMUN : 2018$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05 000888293 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger 000888293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05 000888293 920__ $$lyes 000888293 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000888293 9801_ $$aFullTexts 000888293 980__ $$ajournal 000888293 980__ $$aVDB 000888293 980__ $$aUNRESTRICTED 000888293 980__ $$aI:(DE-Juel1)IEK-9-20110218 000888293 981__ $$aI:(DE-Juel1)IET-1-20110218