001     888295
005     20240712112833.0
024 7 _ |a 10.1111/jace.17556
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/26748
|2 Handle
024 7 _ |a WOS:000592284700001
|2 WOS
037 _ _ |a FZJ-2020-04821
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Kindelmann, Moritz
|0 P:(DE-Juel1)174079
|b 0
|e Corresponding author
245 _ _ |a Erosion behavior of Y 2 O 3 in fluorine‐based etching plasmas: Orientation dependency and reaction layer formation
260 _ _ |a Westerville, Ohio
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610475249_22697
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Even though advanced ceramics are widely applied as consumables in semiconductor etching processes, the erosion mechanisms and connected surface phenomena are not fully understood. Through the interaction with reactive species and ion bombardment during the plasma exposure, oxide ceramic materials like Y2O3 are eroded by a physicochemical mechanism. In this study, fundamental phenomena of surface‐plasma interactions were investigated directly at the surface as well as in the near‐surface region after exposure to fluorine‐based etching plasmas. A straightforward re‐localization technique was used to investigate the microstructural features before and after the plasma exposure for up to 2 hours. Electron microscopy methods (scanning electron microscopy, electron backscatter diffraction) were coupled with atomic force microscopy, secondary ion mass spectroscopy, and transmission electron microscopy to study the surface topography and the corresponding reaction layer. Direct correlation of the microstructure before plasma exposure with the surface topography reveals a novel orientation‐dependent erosion mechanism that forms plateau‐like structures. Furthermore, the in‐depth analysis of the near‐surface area highlights the influence of the applied bias voltage on the physical damage and chemical gradient formation due to plasma exposure. The combined investigation of surface morphology and near‐surface properties reveals new fundamental aspects of the erosion behavior of polycrystalline yttria in CF4‐based etching plasmas.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stamminger, Mark
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schön, Nino
|0 P:(DE-Juel1)179074
|b 2
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 3
|e Corresponding author
700 1 _ |a Eichel, Rüdiger‐A.
|0 P:(DE-Juel1)156123
|b 4
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 5
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 6
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 7
773 _ _ |a 10.1111/jace.17556
|g p. jace.17556
|0 PERI:(DE-600)2008170-4
|n 3
|p 1465-1474
|t Journal of the American Ceramic Society
|v 104
|y 2020
|x 1551-2916
856 4 _ |u https://juser.fz-juelich.de/record/888295/files/jace.17556-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888295
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174079
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179074
910 1 _ |a RWTH Aachen
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)179074
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2018
|d 2020-08-29
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21