000888307 001__ 888307
000888307 005__ 20220223143403.0
000888307 0247_ $$2doi$$a10.1007/s12311-020-01201-y
000888307 0247_ $$2ISSN$$a1473-4222
000888307 0247_ $$2ISSN$$a1473-4230
000888307 0247_ $$2Handle$$a2128/27573
000888307 0247_ $$2pmid$$a33063293
000888307 0247_ $$2WOS$$aWOS:000578890100001
000888307 037__ $$aFZJ-2020-04827
000888307 082__ $$a610
000888307 1001_ $$00000-0002-8271-2305$$aGrosch, Anne Sophie$$b0$$eCorresponding author
000888307 245__ $$aNeurochemical Differences in Spinocerebellar Ataxia Type 14 and 1
000888307 260__ $$aLondon$$bDunitz$$c2021
000888307 3367_ $$2DRIVER$$aarticle
000888307 3367_ $$2DataCite$$aOutput Types/Journal article
000888307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645541021_15749
000888307 3367_ $$2BibTeX$$aARTICLE
000888307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888307 3367_ $$00$$2EndNote$$aJournal Article
000888307 520__ $$aAutosomal-dominant spinocerebellar ataxias (SCA) are neurodegenerative diseases characterized by progressive ataxia. Here, we report on neurometabolic alterations in spinocerebellar ataxia type 1 (SCA1; SCA-ATXN1) and 14 (SCA14; SCA-PRKCG) assessed by non-invasive 1H magnetic resonance spectroscopy. Three Tesla 1H magnetic resonance spectroscopy was performed in 17 SCA14, 14 SCA1 patients, and in 31 healthy volunteers. We assessed metabolites in the cerebellar vermis, right cerebellar hemisphere, pons, prefrontal, and motor cortex. Additionally, clinical characteristics were obtained for each patient to correlate them with metabolites. In SCA14, metabolic changes were restricted to the cerebellar vermis compared with widespread neurochemical alterations in SCA1. In SCA14, total N-acetylaspartate (tNAA) was reduced in the vermis by 34%. In SCA1, tNAA was reduced in the vermis (24%), cerebellar hemisphere (26%), and pons (25%). SCA14 patients showed 24% lower glutamate+glutamine (Glx) and 46% lower γ-aminobutyric acid (GABA) in the vermis, while SCA1 patients showed no alterations in Glx and GABA. SCA1 revealed a decrease of aspartate (Asp) in the vermis (62%) and an elevation in the prefrontal cortex (130%) as well as an elevation of myo-inositol (Ins) in the cerebellar hemisphere (51%) and pons (46%). No changes of Asp and Ins were detected in SCA14. Beyond, glucose (Glc) was increased in the vermis of both SCA14 (155%) and SCA1 (247%). 1H magnetic resonance spectroscopy revealed differing neurochemical profiles in SCA1 and SCA14 and confirmed metabolic changes that may be indicative for neuronal loss and dysfunctional energy metabolism. Therefore, 1H magnetic resonance spectroscopy represents a helpful tool for in-vivo tracking of disease-specific pathophysiology.
000888307 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000888307 588__ $$aDataset connected to CrossRef
000888307 7001_ $$0P:(DE-HGF)0$$aRinnenthal, Jan Leo$$b1
000888307 7001_ $$0P:(DE-HGF)0$$aRönnefarth, Maria$$b2
000888307 7001_ $$0P:(DE-Juel1)131733$$aLux, Silke$$b3
000888307 7001_ $$0P:(DE-HGF)0$$aScheel, Michael$$b4
000888307 7001_ $$0P:(DE-HGF)0$$aEndres, Matthias$$b5
000888307 7001_ $$0P:(DE-HGF)0$$aBrandt, Alexander U.$$b6
000888307 7001_ $$0P:(DE-HGF)0$$aPaul, Friedemann$$b7
000888307 7001_ $$0P:(DE-HGF)0$$aSchmitz-Hübsch, Tanja$$b8
000888307 7001_ $$0P:(DE-Juel1)131622$$aMinnerop, Martina$$b9
000888307 7001_ $$0P:(DE-HGF)0$$aDoss, Sarah$$b10
000888307 773__ $$0PERI:(DE-600)2071266-2$$a10.1007/s12311-020-01201-y$$p169–178$$tThe Cerebellum$$v20$$x1473-4230$$y2021
000888307 8564_ $$uhttps://juser.fz-juelich.de/record/888307/files/Grosch2021_Article_NeurochemicalDifferencesInSpin.pdf$$yOpenAccess
000888307 909CO $$ooai:juser.fz-juelich.de:888307$$popen_access$$pdnbdelivery$$pdriver$$pVDB$$popenaire
000888307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131622$$aForschungszentrum Jülich$$b9$$kFZJ
000888307 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000888307 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000888307 9141_ $$y2021
000888307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000888307 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888307 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREBELLUM : 2018$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-08-26$$wger
000888307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888307 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000888307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000888307 920__ $$lyes
000888307 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000888307 980__ $$ajournal
000888307 980__ $$aVDB
000888307 980__ $$aI:(DE-Juel1)INM-1-20090406
000888307 980__ $$aUNRESTRICTED
000888307 9801_ $$aFullTexts