000888311 001__ 888311
000888311 005__ 20240711085701.0
000888311 0247_ $$2doi$$a10.1016/j.surfcoat.2020.126494
000888311 0247_ $$2ISSN$$a0257-8972
000888311 0247_ $$2ISSN$$a1879-3347
000888311 0247_ $$2Handle$$a2128/26866
000888311 0247_ $$2WOS$$aWOS:000604583200002
000888311 037__ $$aFZJ-2020-04831
000888311 082__ $$a670
000888311 1001_ $$0P:(DE-Juel1)169478$$aKalfhaus, T.$$b0$$ufzj
000888311 245__ $$aPath to single-crystalline repair and manufacture of Ni-based superalloy using directional annealing
000888311 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000888311 3367_ $$2DRIVER$$aarticle
000888311 3367_ $$2DataCite$$aOutput Types/Journal article
000888311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634813725_20458
000888311 3367_ $$2BibTeX$$aARTICLE
000888311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888311 3367_ $$00$$2EndNote$$aJournal Article
000888311 520__ $$aAdvanced methods for the repair of single-crystalline (SX) Ni-based superalloys are of special interest for the gas turbine industry. Polycrystalline repair approaches show promising results, while the repair of SX materials is still challenging. Directional annealing experiments resulted in large columnar grains by imposing thermal gradients at the abnormal grain growth temperature of a specific Ni-based superalloy. A numerical model of the Bridgman process is applied to provide an insight into the temperature evolution during zone annealing of the Vacuum-Plasma-Spray (VPS) repair coatings with the aim of promoting grain growth from the SX substrate. The results presented here suggest that this is a promising approach to repair or manufacture SX turbine blades.
000888311 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888311 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x1
000888311 588__ $$aDataset connected to CrossRef
000888311 7001_ $$0P:(DE-HGF)0$$aSchaar, H.$$b1$$eCorresponding author
000888311 7001_ $$0P:(DE-Juel1)161483$$aThaler, F.$$b2$$ufzj
000888311 7001_ $$0P:(DE-HGF)0$$aRuttert, B.$$b3
000888311 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b4$$ufzj
000888311 7001_ $$0P:(DE-HGF)0$$aFrenzel, J.$$b5
000888311 7001_ $$0P:(DE-HGF)0$$aSteinbach, I.$$b6
000888311 7001_ $$0P:(DE-HGF)0$$aTheisen, W.$$b7
000888311 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b8$$ufzj
000888311 7001_ $$0P:(DE-HGF)0$$aClyne, T. W.$$b9
000888311 7001_ $$0P:(DE-Juel1)129670$$aVassen, R.$$b10$$ufzj
000888311 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2020.126494$$gp. 126494 -$$p126494 -$$tSurface and coatings technology$$v405$$x0257-8972$$y2021
000888311 8564_ $$uhttps://juser.fz-juelich.de/record/888311/files/10%201016%40j%20surfcoat%202020%20126494.pdf$$yPublished on 2020-11-02. Available in OpenAccess from 2022-11-02.
000888311 8564_ $$uhttps://juser.fz-juelich.de/record/888311/files/10.1016_j.surfcoat.2020.126494.pdf$$yRestricted
000888311 909CO $$ooai:juser.fz-juelich.de:888311$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169478$$aForschungszentrum Jülich$$b0$$kFZJ
000888311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161483$$aForschungszentrum Jülich$$b2$$kFZJ
000888311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b4$$kFZJ
000888311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b8$$kFZJ
000888311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b10$$kFZJ
000888311 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888311 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000888311 9141_ $$y2021
000888311 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000888311 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888311 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888311 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2018$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888311 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000888311 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888311 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000888311 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000888311 9801_ $$aFullTexts
000888311 980__ $$ajournal
000888311 980__ $$aVDB
000888311 980__ $$aI:(DE-Juel1)IEK-1-20101013
000888311 980__ $$aI:(DE-82)080011_20140620
000888311 980__ $$aUNRESTRICTED
000888311 981__ $$aI:(DE-Juel1)IMD-2-20101013