000888313 001__ 888313
000888313 005__ 20220930130259.0
000888313 0247_ $$2doi$$a10.1029/2020GB006685
000888313 0247_ $$2ISSN$$a0886-6236
000888313 0247_ $$2ISSN$$a1944-9224
000888313 0247_ $$2Handle$$a2128/26640
000888313 0247_ $$2altmetric$$aaltmetric:95267101
000888313 0247_ $$2WOS$$aWOS:000613330700003
000888313 037__ $$aFZJ-2020-04833
000888313 082__ $$a540
000888313 1001_ $$0P:(DE-Juel1)180580$$aDold, Christian$$b0$$eCorresponding author
000888313 245__ $$aMeasured and simulated carbon dynamics in Midwestern US corn‐soybean rotations
000888313 260__ $$aHoboken, NJ$$bWiley$$c2021
000888313 3367_ $$2DRIVER$$aarticle
000888313 3367_ $$2DataCite$$aOutput Types/Journal article
000888313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639052854_6863
000888313 3367_ $$2BibTeX$$aARTICLE
000888313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888313 3367_ $$00$$2EndNote$$aJournal Article
000888313 520__ $$aCorn (Zea mays L.) and soybean (Glycine max [L.] Merr.) production dominate Midwestern U.S. agriculture and impact the regional carbon and nitrogen cycles. Sustaining soil carbon is important for corn‐soybean production (CS); however, quantifying soil carbon changes requires long‐term field measurements and/or model simulations. In this study, changes in soil organic (SOC), inorganic (SIC), and total (TC) carbon; pH; total nitrogen (TN); and net ecosystem production (NEP) were measured in a conventional corn‐soybean rotation in central Iowa. Soil samples (n = 42; 0–120 cm depth) were collected from two adjacent fields in 2005 and 2016. Eddy‐flux stations set up in the fields continuously monitored NEP from 2005–2016, and net biome production (NBP) was calculated using yield records. The DayCENT model was used to simulate the effects of conventional management practices on soil carbon and calibrated with field‐measured NEP and SOC. Measured soil TC (0–120 cm) decreased by −14.19 ± 6.25 Mg ha−1, with highest reductions in SOC and SIC (p < 0.05) at 0–15 and 90–120 cm, respectively. Measured TN decreased by −0.7 ± 0.29 Mg ha−1 with N‐accumulation at 60–90 cm (p < 0.05). Eddy‐flux NBP decreased by −13.19 ± 0.05 Mg ha−1. Soil and eddy‐flux records show a carbon reduction by −1.14 ± 0.63 and −1.20 ± 0.06 Mg ha−1 yr−1, respectively. The validated DayCENT model suggests that all SOC pools declined. We postulate that conventional CS production has adverse effects on C and N dynamics in Midwestern United States.
000888313 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000888313 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000888313 588__ $$aDataset connected to CrossRef
000888313 7001_ $$0P:(DE-HGF)0$$aWacha, K. M.$$b1
000888313 7001_ $$00000-0002-7047-1233$$aSauer, T. J.$$b2
000888313 7001_ $$0P:(DE-HGF)0$$aHatfield, J. L.$$b3
000888313 7001_ $$0P:(DE-HGF)0$$aPrueger, J. H.$$b4
000888313 773__ $$0PERI:(DE-600)2021601-4$$a10.1029/2020GB006685$$n1$$pe2020GB006685$$tGlobal biogeochemical cycles$$v35$$x1944-9224$$y2021
000888313 8564_ $$uhttps://juser.fz-juelich.de/record/888313/files/2020GB006685.pdf$$yOpenAccess
000888313 8767_ $$d2020-12-01$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000888313 909CO $$ooai:juser.fz-juelich.de:888313$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000888313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180580$$aForschungszentrum Jülich$$b0$$kFZJ
000888313 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000888313 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000888313 9141_ $$y2020
000888313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888313 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888313 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLOBAL BIOGEOCHEM CY : 2018$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger
000888313 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLOBAL BIOGEOCHEM CY : 2018$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888313 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000888313 980__ $$ajournal
000888313 980__ $$aVDB
000888313 980__ $$aI:(DE-Juel1)IBG-3-20101118
000888313 980__ $$aAPC
000888313 980__ $$aUNRESTRICTED
000888313 9801_ $$aAPC
000888313 9801_ $$aFullTexts