000888319 001__ 888319
000888319 005__ 20240708132750.0
000888319 0247_ $$2doi$$a10.1016/j.seppur.2020.118114
000888319 0247_ $$2ISSN$$a1383-5866
000888319 0247_ $$2ISSN$$a1873-3794
000888319 0247_ $$2Handle$$a2128/27450
000888319 0247_ $$2WOS$$aWOS:000604993500005
000888319 037__ $$aFZJ-2020-04839
000888319 082__ $$a540
000888319 1001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b0$$eCorresponding author$$ufzj
000888319 245__ $$aZirconia-supported hybrid organosilica microporous membranes for CO2 separation and pervaporation
000888319 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000888319 3367_ $$2DRIVER$$aarticle
000888319 3367_ $$2DataCite$$aOutput Types/Journal article
000888319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616165780_23003
000888319 3367_ $$2BibTeX$$aARTICLE
000888319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888319 3367_ $$00$$2EndNote$$aJournal Article
000888319 520__ $$aHybrid organosilica membranes have great potential for realizing high-flux, high-selectivity gas separation and pervaporation. Current membranes, however, have one major problem: the intermediate layers between the selective layer and the porous support are made of unstable γ-alumina. In this article, a strongly improved membrane set-up based on mesoporous stabilized zirconia (8YSZ) intermediate layers is reported. This novel membrane showed selectivities in the range of 20–30 for different CO2/N2 mixtures and accompanying CO2 permeances of 1.5–4 m3/(m2.h.bar). In pervaporation tests with water/isopropanol and water/butanol mixtures (5 wt% water), the membrane selectively separated water (separation factor ~150 – 600) and an excellent flux of ~5 kg m-2h−1 was achieved at 70 °C. These results represent an important step towards the industrial application of hybrid silica membranes in applications such as pervaporation as well as the selective removal of CO2. The analysis also shows for the first time that effective gas separation and pervaporation is realized when γ-alumina is substituted for another, more stable membrane material.
000888319 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000888319 588__ $$aDataset connected to CrossRef
000888319 7001_ $$0P:(DE-HGF)0$$aVelterop, Frans$$b1
000888319 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b2$$ufzj
000888319 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2020.118114$$gp. 118114 -$$p118114 -$$tSeparation and purification technology$$v259$$x1383-5866$$y2021
000888319 8564_ $$uhttps://juser.fz-juelich.de/record/888319/files/Manuscript_Hybrid-Silica-Membrane_TimVanGestel_SEPPUR.pdf$$yPublished on 2020-11-26. Available in OpenAccess from 2022-11-26.
000888319 909CO $$ooai:juser.fz-juelich.de:888319$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich$$b0$$kFZJ
000888319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b2$$kFZJ
000888319 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888319 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000888319 9141_ $$y2021
000888319 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000888319 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888319 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888319 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEP PURIF TECHNOL : 2018$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSEP PURIF TECHNOL : 2018$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000888319 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000888319 920__ $$lyes
000888319 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000888319 9801_ $$aFullTexts
000888319 980__ $$ajournal
000888319 980__ $$aVDB
000888319 980__ $$aUNRESTRICTED
000888319 980__ $$aI:(DE-Juel1)IEK-1-20101013
000888319 981__ $$aI:(DE-Juel1)IMD-2-20101013