001     888319
005     20240708132750.0
024 7 _ |a 10.1016/j.seppur.2020.118114
|2 doi
024 7 _ |a 1383-5866
|2 ISSN
024 7 _ |a 1873-3794
|2 ISSN
024 7 _ |a 2128/27450
|2 Handle
024 7 _ |a WOS:000604993500005
|2 WOS
037 _ _ |a FZJ-2020-04839
082 _ _ |a 540
100 1 _ |a Van Gestel, Tim
|0 P:(DE-Juel1)129669
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Zirconia-supported hybrid organosilica microporous membranes for CO2 separation and pervaporation
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616165780_23003
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hybrid organosilica membranes have great potential for realizing high-flux, high-selectivity gas separation and pervaporation. Current membranes, however, have one major problem: the intermediate layers between the selective layer and the porous support are made of unstable γ-alumina. In this article, a strongly improved membrane set-up based on mesoporous stabilized zirconia (8YSZ) intermediate layers is reported. This novel membrane showed selectivities in the range of 20–30 for different CO2/N2 mixtures and accompanying CO2 permeances of 1.5–4 m3/(m2.h.bar). In pervaporation tests with water/isopropanol and water/butanol mixtures (5 wt% water), the membrane selectively separated water (separation factor ~150 – 600) and an excellent flux of ~5 kg m-2h−1 was achieved at 70 °C. These results represent an important step towards the industrial application of hybrid silica membranes in applications such as pervaporation as well as the selective removal of CO2. The analysis also shows for the first time that effective gas separation and pervaporation is realized when γ-alumina is substituted for another, more stable membrane material.
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Velterop, Frans
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meulenberg, Wilhelm A.
|0 P:(DE-Juel1)129637
|b 2
|u fzj
773 _ _ |a 10.1016/j.seppur.2020.118114
|g p. 118114 -
|0 PERI:(DE-600)2022535-0
|p 118114 -
|t Separation and purification technology
|v 259
|y 2021
|x 1383-5866
856 4 _ |u https://juser.fz-juelich.de/record/888319/files/Manuscript_Hybrid-Silica-Membrane_TimVanGestel_SEPPUR.pdf
|y Published on 2020-11-26. Available in OpenAccess from 2022-11-26.
909 C O |o oai:juser.fz-juelich.de:888319
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129637
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SEP PURIF TECHNOL : 2018
|d 2020-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SEP PURIF TECHNOL : 2018
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21