000888322 001__ 888322
000888322 005__ 20210130010919.0
000888322 0247_ $$2doi$$a10.1039/D0EN00412J
000888322 0247_ $$2ISSN$$a2051-8153
000888322 0247_ $$2ISSN$$a2051-8161
000888322 0247_ $$2Handle$$a2128/26438
000888322 0247_ $$2altmetric$$aaltmetric:88483426
000888322 0247_ $$2WOS$$aWOS:000570558000025
000888322 037__ $$aFZJ-2020-04841
000888322 082__ $$a333.7
000888322 1001_ $$00000-0003-0804-8642$$aBeauvois, Anthony$$b0$$eCorresponding author
000888322 245__ $$aHow does calcium drive the structural organization of iron-organic matter aggregates? A multiscale investigation
000888322 260__ $$aCambridge$$c2020
000888322 3367_ $$2DRIVER$$aarticle
000888322 3367_ $$2DataCite$$aOutput Types/Journal article
000888322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609334008_25373
000888322 3367_ $$2BibTeX$$aARTICLE
000888322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888322 3367_ $$00$$2EndNote$$aJournal Article
000888322 520__ $$aIron–organic matter (Fe–OM) aggregates are a key factor in the control of pollutant mobility. Their physical and structural organization depends on the prevailing physicochemical conditions during their formation and on subsequent exposure to variations in porewater geochemistry. Among these conditions, calcium (Ca) could be a major parameter given its high concentrations in the environment and its affinity for OM. Mimetic environmental Fe–OM–Ca associations were synthesized at various Fe/organic carbon (OC) and Ca/Fe molar ratios using leonardite humic acid as the OM model. The impact of Ca on Fe–OM aggregates was studied by a combination of X-ray absorption spectroscopy, small angle X-ray and neutron scattering and imaging techniques (TEM, cryo-TEM and cryo-TXM). Iron phases are constituted of Fe(III)-oligomers, Fe(III)-nanoparticles and ferrihydrite (Fh), all bound to or embedded in OM. Iron phases exhibit a fractal organization with Fe-primary beads aggregated as Fe-primary aggregates (Fe-PA) which themselves are embedded in OM aggregates. For Ca/OC (mol mol−1) < 0.026, Fe-PA aggregate in a third level as an Fe-secondary aggregate. For Ca/OC ≥ 0.026, OM forms a large Ca-branched network in which Ca is bound as a dimer to OM carboxylic sites. Under such conditions, Fe-PA are distributed in the OM network, distant from each other. All these structural transitions are driven by Ca which partially screens the Fe–OM interactions. The formation of such a micrometric network should impact both the surface reactivity of the Fe phases and the mobility of Fe, OM and associated elements, notably in soil pores where they are produced under natural conditions
000888322 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000888322 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000888322 588__ $$aDataset connected to CrossRef
000888322 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000888322 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000888322 65017 $$0V:(DE-MLZ)GC-170-2016$$2V:(DE-HGF)$$aEarth, Environment and Cultural Heritage$$x0
000888322 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x1
000888322 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000888322 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000888322 7001_ $$00000-0002-5147-5108$$aVantelon, Delphine$$b1
000888322 7001_ $$0P:(DE-HGF)0$$aJestin, Jacques$$b2
000888322 7001_ $$0P:(DE-HGF)0$$aRivard, Camille$$b3
000888322 7001_ $$0P:(DE-HGF)0$$aBouhnik-Le Coz, Martine$$b4
000888322 7001_ $$0P:(DE-HGF)0$$aDupont, Aurélien$$b5
000888322 7001_ $$0P:(DE-HGF)0$$aBriois, Valérie$$b6
000888322 7001_ $$0P:(DE-HGF)0$$aBizien, Thomas$$b7
000888322 7001_ $$0P:(DE-HGF)0$$aSorrentino, Andrea$$b8
000888322 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b9
000888322 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b10
000888322 7001_ $$00000-0002-3171-9857$$aLotfi-Kalahroodi, Elaheh$$b11
000888322 7001_ $$0P:(DE-HGF)0$$aPierson-Wickmann, Anne-Catherine$$b12
000888322 7001_ $$0P:(DE-HGF)0$$aDavranche, Mélanie$$b13
000888322 773__ $$0PERI:(DE-600)2758235-8$$a10.1039/D0EN00412J$$gVol. 7, no. 9, p. 2833 - 2849$$n9$$p2833 - 2849$$tEnvironmental science / Nano$$v7$$x2051-8161$$y2020
000888322 8564_ $$uhttps://juser.fz-juelich.de/record/888322/files/Beauvois_2020_DraftPostReferee.pdf$$yPublished on 2020-08-05. Available in OpenAccess from 2021-08-05.
000888322 8564_ $$uhttps://juser.fz-juelich.de/record/888322/files/d0en00412j.pdf$$yRestricted
000888322 909CO $$ooai:juser.fz-juelich.de:888322$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000888322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI-NANO : 2018$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-08-22$$wger
000888322 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-22$$wger
000888322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI-NANO : 2018$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000888322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000888322 9141_ $$y2020
000888322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aILL$$b2
000888322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b9$$kFZJ
000888322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b10$$kFZJ
000888322 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000888322 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000888322 920__ $$lyes
000888322 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000888322 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000888322 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000888322 980__ $$ajournal
000888322 980__ $$aVDB
000888322 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000888322 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000888322 980__ $$aI:(DE-588b)4597118-3
000888322 980__ $$aUNRESTRICTED
000888322 9801_ $$aFullTexts