001     888332
005     20210302102630.0
024 7 _ |2 doi
|a 10.1002/admi.202000450
024 7 _ |2 Handle
|a 2128/26806
024 7 _ |2 altmetric
|a altmetric:83920652
024 7 _ |2 WOS
|a WOS:000539609000001
037 _ _ |a FZJ-2020-04851
082 _ _ |a 600
100 1 _ |0 P:(DE-HGF)0
|a Philipp, Martin
|b 0
|e Corresponding author
245 _ _ |a The Electronic Conductivity of Single Crystalline Ga‐Stabilized Cubic Li$_7$La$_3$Zr$_2$O$_{12}$ : A Technologically Relevant Parameter for All‐Solid‐State Batteries
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1610982896_13821
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The next‐generation of all‐solid‐state lithium batteries need ceramic electrolytes with very high ionic conductivities. At the same time a negligible electronic conductivity σeon is required to eliminate self‐discharge in such systems. A non‐negligible electronic conductivity may also promote the unintentional formation of Li dendrites, being currently one of the key issues hindering the development of long‐lasting all‐solid‐state batteries. This interplay is suggested recently for garnet‐type Li7La3Zr2O12 (LLZO). It is, however, well known that the overall macroscopic electronic conductivity may be governed by a range of extrinsic factors such as impurities, chemical inhomogeneities, grain boundaries, morphology, and size effects. Here, advantage of Czochralski‐grown single crystals, which offer the unique opportunity to evaluate intrinsic properties of a chemically homogeneous matrix, is taken to measure the electronic conductivity σeon. Via long‐time, high‐precision potentiostatic polarization experiments an upper limit of σeon in the order of 5 × 10−10 S cm−1 (293 K) is estimated. This value is by six orders of magnitude lower than the corresponding total conductivity σtotal = 10−3 S cm−1 of Ga‐LZO. Thus, it is concluded that the high values of σeon recently reported for similar systems do not necessarily mirror intragrain bulk properties of chemically homogenous systems but may originate from chemically inhomogeneous interfacial areas.
536 _ _ |0 G:(DE-HGF)POF3-6G4
|a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
|c POF3-6G15
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|a Condensed Matter Physics
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-240
|2 V:(DE-HGF)
|a Crystallography
|x 1
650 1 7 |0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|a Energy
|x 0
693 _ _ |0 EXP:(DE-MLZ)HEIDI-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|x 0
700 1 _ |0 0000-0003-2917-1818
|a Gadermaier, Bernhard
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Posch, Patrick
|b 2
700 1 _ |0 0000-0002-9260-9117
|a Hanzu, Ilie
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Ganschow, Steffen
|b 4
700 1 _ |0 P:(DE-Juel1)164297
|a Meven, Martin
|b 5
700 1 _ |0 0000-0002-2074-941X
|a Rettenwander, Daniel
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Redhammer, Günther J.
|b 7
700 1 _ |0 0000-0001-9706-4892
|a Wilkening, H. Martin R.
|b 8
773 _ _ |0 PERI:(DE-600)2750376-8
|a 10.1002/admi.202000450
|g Vol. 7, no. 16, p. 2000450 -
|n 16
|p 2000450 -
|t Advanced materials interfaces
|v 7
|x 2196-7350
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/888332/files/admi.202000450.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888332
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164297
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 0
913 1 _ |0 G:(DE-HGF)POF3-6G15
|1 G:(DE-HGF)POF3-6G0
|2 G:(DE-HGF)POF3-600
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF3-6G15
|a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|v FRM II / MLZ
|x 1
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-08-26
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ADV MATER INTERFACES : 2018
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2020-08-26
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21