000888334 001__ 888334
000888334 005__ 20240711085649.0
000888334 0247_ $$2doi$$a10.1107/S1600576720012698
000888334 0247_ $$2ISSN$$a0021-8898
000888334 0247_ $$2ISSN$$a1600-5767
000888334 0247_ $$2Handle$$a2128/26323
000888334 0247_ $$2altmetric$$aaltmetric:93053280
000888334 0247_ $$2pmid$$a33304224
000888334 0247_ $$2WOS$$aWOS:000595702500008
000888334 037__ $$aFZJ-2020-04853
000888334 082__ $$a540
000888334 1001_ $$0P:(DE-HGF)0$$aScherb, Tobias$$b0
000888334 245__ $$aUnravelling the crystal structure of Nd 5.8 WO 12−δ and Nd 5.7 W 0.75 Mo 0.25 O 12−δ mixed ionic electronic conductors
000888334 260__ $$a[S.l.]$$bWiley-Blackwell$$c2020
000888334 3367_ $$2DRIVER$$aarticle
000888334 3367_ $$2DataCite$$aOutput Types/Journal article
000888334 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606822719_20046
000888334 3367_ $$2BibTeX$$aARTICLE
000888334 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888334 3367_ $$00$$2EndNote$$aJournal Article
000888334 520__ $$aMixed ionic electronic conducting ceramics Nd6−yWO12−δ (δ is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6−yWO12−δ, the ionic/electronic transport mechanism in Nd6−yWO12−δ is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12−δ and molybdenum-substituted Nd5.7W0.75Mo0.25O12−δ prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12−δ and Nd5.7W0.75Mo0.25O12−δ. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replaces W at both Wyckoff sites 4a and 48h and is evenly distributed, in contrast with La6−yWO12−δ. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W (W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6−yWO12−δ is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies.
000888334 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888334 588__ $$aDataset connected to CrossRef
000888334 7001_ $$0P:(DE-Juel1)161352$$aFantin, Andrea$$b1$$eCorresponding author
000888334 7001_ $$00000-0003-0499-4885$$aChecchia, Stefano$$b2
000888334 7001_ $$00000-0001-6775-0023$$aStephan-Scherb, Christiane$$b3
000888334 7001_ $$0P:(DE-HGF)0$$aEscolástico, Sonia$$b4
000888334 7001_ $$0P:(DE-HGF)0$$aFranz, Alexandra$$b5
000888334 7001_ $$0P:(DE-Juel1)128526$$aSeeger, Janka$$b6
000888334 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b7
000888334 7001_ $$00000-0003-2207-6113$$ad'Acapito, Francesco$$b8
000888334 7001_ $$00000-0002-1515-1106$$aSerra, José M.$$b9
000888334 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576720012698$$gVol. 53, no. 6$$n6$$p $$tJournal of applied crystallography$$v53$$x1600-5767$$y2020
000888334 8564_ $$uhttps://juser.fz-juelich.de/record/888334/files/NWO_2020-09-22_accepted_JAC.pdf$$yOpenAccess
000888334 8564_ $$uhttps://juser.fz-juelich.de/record/888334/files/kc5116.pdf$$yOpenAccess
000888334 909CO $$ooai:juser.fz-juelich.de:888334$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b7$$kFZJ
000888334 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888334 9141_ $$y2020
000888334 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000888334 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888334 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-25$$wger
000888334 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888334 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2018$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-25
000888334 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger
000888334 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000888334 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000888334 9801_ $$aFullTexts
000888334 980__ $$ajournal
000888334 980__ $$aVDB
000888334 980__ $$aUNRESTRICTED
000888334 980__ $$aI:(DE-Juel1)IEK-1-20101013
000888334 981__ $$aI:(DE-Juel1)IMD-2-20101013