001     888334
005     20240711085649.0
024 7 _ |a 10.1107/S1600576720012698
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 2128/26323
|2 Handle
024 7 _ |a altmetric:93053280
|2 altmetric
024 7 _ |a 33304224
|2 pmid
024 7 _ |a WOS:000595702500008
|2 WOS
037 _ _ |a FZJ-2020-04853
082 _ _ |a 540
100 1 _ |a Scherb, Tobias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unravelling the crystal structure of Nd 5.8 WO 12−δ and Nd 5.7 W 0.75 Mo 0.25 O 12−δ mixed ionic electronic conductors
260 _ _ |a [S.l.]
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606822719_20046
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mixed ionic electronic conducting ceramics Nd6−yWO12−δ (δ is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6−yWO12−δ, the ionic/electronic transport mechanism in Nd6−yWO12−δ is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12−δ and molybdenum-substituted Nd5.7W0.75Mo0.25O12−δ prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12−δ and Nd5.7W0.75Mo0.25O12−δ. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replaces W at both Wyckoff sites 4a and 48h and is evenly distributed, in contrast with La6−yWO12−δ. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W (W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6−yWO12−δ is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fantin, Andrea
|0 P:(DE-Juel1)161352
|b 1
|e Corresponding author
700 1 _ |a Checchia, Stefano
|0 0000-0003-0499-4885
|b 2
700 1 _ |a Stephan-Scherb, Christiane
|0 0000-0001-6775-0023
|b 3
700 1 _ |a Escolástico, Sonia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Franz, Alexandra
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Seeger, Janka
|0 P:(DE-Juel1)128526
|b 6
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 7
700 1 _ |a d'Acapito, Francesco
|0 0000-0003-2207-6113
|b 8
700 1 _ |a Serra, José M.
|0 0000-0002-1515-1106
|b 9
773 _ _ |a 10.1107/S1600576720012698
|g Vol. 53, no. 6
|0 PERI:(DE-600)2020879-0
|n 6
|p
|t Journal of applied crystallography
|v 53
|y 2020
|x 1600-5767
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888334/files/NWO_2020-09-22_accepted_JAC.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888334/files/kc5116.pdf
909 C O |o oai:juser.fz-juelich.de:888334
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21