001     888362
005     20230426083224.0
024 7 _ |a 10.1103/PhysRevB.102.075311
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26337
|2 Handle
024 7 _ |a altmetric:74609173
|2 altmetric
024 7 _ |a WOS:000562629100003
|2 WOS
037 _ _ |a FZJ-2020-04868
082 _ _ |a 530
100 1 _ |a Zeuch, D.
|0 P:(DE-Juel1)170090
|b 0
|e Corresponding author
245 _ _ |a Efficient two-qubit pulse sequences beyond CNOT
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606901857_18528
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded qubits for exchange-only quantum computation. Two pulse sequence constructions are given. The first is motivated by an analytic derivation of the efficient Fong-Wandzura sequence for an exact cnot gate. This derivation, briefly reviewed here, is based on elevating short sequences of swap pulses to an entangling two-qubit gate. To go beyond cnot, we apply a similar elevation to a modified short sequence consisting of swaps and one pulse of arbitrary duration. This results in two-qubit sequences that carry out controlled-rotation gates of arbitrary angle. The second construction streamlines a class of arbitrary cphase gates established earlier. Both constructions are based on building two-qubit sequences out of subsequences with special properties that render each step of the construction analytically tractable.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2020-08-26
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bonesteel, N. E.
|0 0000-0003-0613-5021
|b 1
773 1 8 |a 10.1103/physrevb.102.075311
|b American Physical Society (APS)
|d 2020-08-26
|n 7
|p 075311
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.075311
|g Vol. 102, no. 7, p. 075311
|0 PERI:(DE-600)2844160-6
|n 7
|p 075311
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888362/files/Beyond_arxiv_v2.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888362/files/PhysRevB.102.075311.pdf
909 C O |o oai:juser.fz-juelich.de:888362
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170090
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevA.57.120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.147902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.1758
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.63.042307
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/aa761f
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35042541
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.72.022319
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.140503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.250503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1751-8113/48/6/065304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.121410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.075436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.8.064035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s11128-005-4480-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1116955
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.075403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2149
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.168
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature13407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.1500214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.110402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.086801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41534-017-0034-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41565-019-0500-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1023/B:QINP.0000020084.53422.8e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 B. H. Fong
|y 2011
|2 Crossref
|o B. H. Fong 2011
999 C 5 |a 10.1103/PhysRevB.89.085314
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.93.010303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.045306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. A. Nielsen
|y 2000
|2 Crossref
|t Quantum computation and quantum information
|o M. A. Nielsen Quantum computation and quantum information 2000
999 C 5 |a 10.1038/ncomms5213
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/18/2/023023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.22331/q-2019-10-07-191
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.22331/q-2018-08-06-79
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.99.042331
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21