001     888363
005     20240711085644.0
024 7 _ |a 10.1007/s11090-020-10143-6
|2 doi
024 7 _ |a 0272-4324
|2 ISSN
024 7 _ |a 1572-8986
|2 ISSN
024 7 _ |a 2128/26987
|2 Handle
024 7 _ |a altmetric:95699807
|2 altmetric
024 7 _ |a WOS:000595071400001
|2 WOS
037 _ _ |a FZJ-2020-04869
082 _ _ |a 540
100 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 0
|e Corresponding author
|u fzj
245 _ _ |a How Hydrogen Admixture Changes Plasma Jet Characteristics in Spray Processes at Low Pressure
260 _ _ |a Dordrecht
|c 2021
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634813670_20458
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In plasma spraying, hydrogen is widely used as a secondary working gas besides argon. In particular under low pressure, there are strong effects on the plasma jet characteristics even by small hydrogen percentages. Under such conditions, fundamental mechanisms like diffusion and recombination are affected while this is less relevant under atmospheric conditions. This was investigated for argon–hydrogen mixtures by optical emission spectroscopy (OES). The small electron densities under the investigated low pressure conditions implied specific difficulties in the application of several OES-based methods which are discussed in detail. Adding hydrogen to the plasma gas effected an increased plasma enthalpy. Moreover, the jet expanded radially as the reactive part of the thermal conductivity was enhanced by recombination of atomic hydrogen so that the shock waves were less reflected at the cold jet rims. In the jet cores, the lowest temperatures were found for the highest hydrogen admixture because the energy consumption due to the dissociation of molecular hydrogen outbalanced the increase of the plasma enthalpy. Variations in the radial temperature profiles were related to the jet structure and radial thermal conductivity. The local hydrogen–argon concentration ratios revealed an accumulation of hydrogen atoms at the jet rims. Clear indications were found, that higher hydrogen contents promoted the fast recombination of electrons and ions. However, it is assumed that the transport properties of the plasma were hardly affected by this, since the electron densities and thus the ionization degrees were generally small due to the low pressure conditions
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1007/s11090-020-10143-6
|0 PERI:(DE-600)2018594-7
|p 109-132
|t Plasma chemistry and plasma processing
|v 41
|y 2021
|x 1572-8986
856 4 _ |u https://juser.fz-juelich.de/record/888363/files/Mauer2021_Article_HowHydrogenAdmixtureChangesPla.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888363
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129633
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA CHEM PLASMA P : 2018
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21