001     888364
005     20240712101028.0
024 7 _ |2 doi
|a 10.5194/acp-20-14617-2020
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/27417
024 7 _ |2 altmetric
|a altmetric:95251222
024 7 _ |2 pmid
|a 33414818
024 7 _ |2 WOS
|a WOS:000595073000003
037 _ _ |a FZJ-2020-04870
082 _ _ |a 550
100 1 _ |0 0000-0002-6595-0686
|a Gaubert, Benjamin
|b 0
|e Corresponding author
245 _ _ |a Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1615882535_13754
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea–United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42 % in the control run and by 12 % with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80 % for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29 % for CO, 18 % for ozone, 11 % for HO2, and 27 % for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|a Geosciences
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|a Chemistry
|x 1
650 1 7 |0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|a Earth, Environment and Cultural Heritage
|x 0
700 1 _ |0 0000-0003-2325-6212
|a Emmons, Louisa K.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Raeder, Kevin
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Tilmes, Simone
|b 3
700 1 _ |0 0000-0002-1466-4655
|a Miyazaki, Kazuyuki
|b 4
700 1 _ |0 0000-0002-2615-5831
|a Arellano Jr., Avelino F.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Elguindi, Nellie
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Granier, Claire
|b 7
700 1 _ |0 0000-0002-0107-4496
|a Tang, Wenfu
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Barré, Jérôme
|b 9
700 1 _ |0 0000-0002-5949-9307
|a Worden, Helen M.
|b 10
700 1 _ |0 0000-0001-8124-2455
|a Buchholz, Rebecca R.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Edwards, David P.
|b 12
700 1 _ |0 P:(DE-Juel1)162342
|a Franke, Philipp
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Anderson, Jeffrey L.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Saunois, Marielle
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Schroeder, Jason
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Woo, Jung-Hun
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Simpson, Isobel J.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Blake, Donald R.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Meinardi, Simone
|b 20
700 1 _ |0 0000-0002-6126-3854
|a Wennberg, Paul O.
|b 21
700 1 _ |0 0000-0001-5443-729X
|a Crounse, John
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Teng, Alex
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Kim, Michelle
|b 24
700 1 _ |0 0000-0003-0206-3083
|a Dickerson, Russell R.
|b 25
700 1 _ |0 0000-0002-6823-9603
|a He, Hao
|b 26
700 1 _ |0 0000-0001-9974-1666
|a Ren, Xinrong
|b 27
700 1 _ |0 P:(DE-HGF)0
|a Pusede, Sally E.
|b 28
700 1 _ |0 0000-0002-3617-0269
|a Diskin, Glenn S.
|b 29
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-20-14617-2020
|g Vol. 20, no. 23, p. 14617 - 14647
|n 23
|p 14617 - 14647
|t Atmospheric chemistry and physics
|v 20
|x 1680-7324
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/888364/files/ACP_Gaubert_etal_2020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/888364/files/acp-20-14617-2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888364
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 0000-0003-2325-6212
|a External Institute
|b 1
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162342
|a Forschungszentrum Jülich
|b 13
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
913 2 _ |0 G:(DE-HGF)POF4-211
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2111
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Die Atmosphäre im globalen Wandel
|x 0
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21