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Abstract. Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the
Northern Hemisphere, exhibiting a pervasive, negative bias against measurements peaking in late
winter and early spring. While this bias has been commonly attributed to underestimation of
direct  anthropogenic  and  biomass  burning  emissions,  chemical  production  and  loss  via  OH
reaction from emissions of anthropogenic and biogenic VOCs play an important role. Here we
investigate the reasons for this underestimation using aircraft measurements taken in May and
June 2016 from the Korea United States Air Quality (KORUS‐AQ) experiment in South Korea
and the Air chemistry Research In Asia (ARIAs) in the North China Plain (NCP). For reference,
multispectral  CO  retrievals  (V8J)  from  the  Measurements  of  Pollution  in  the  Troposphere
(MOPITT)  are  jointly  assimilated  with  meteorological  observations  using  an  Ensemble
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Adjustment  Kalman  Filter  (EAKF)  within  the  global  Community  Atmosphere  Model  with
Chemistry (CAM-chem) and the Data Assimilation Research Testbed (DART). With regard to
KORUS-AQ data, CO is underestimated by 42 % in the Control-Run and by 12 % with the
MOPITT assimilation  run.  The  inversion  suggests  an  underestimation  of  anthropogenic  CO
sources in many regions, by up to 80 % for Northern China, with large increments over the
Liaoning province and the North China Plains (NCP). Yet, an often-overlooked aspect of these
inversions is that correcting the underestimation in anthropogenic CO emissions also improves
the  comparison  with  observational  O3 datasets,  and  observationally  constrained  box  model
simulations of OH and HO2. Running a CAM-chem simulation with the updated emissions of
anthropogenic CO reduces the bias by 29 % for CO, 18 % for ozone, 11 % for HO2 and 27 % for
OH. Longer lived anthropogenic VOCs whose model errors are correlated with CO are also
improved while short-lived VOCs, including formaldehyde, are difficult to constrain solely by
assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3,
with an average underestimation of 5.5 ppbv and a reduction in the bias of surface formaldehyde
and oxygenated VOCs can be achieved by separately increasing by a factor of two the modeled
biogenic  emissions  for  the  plant  functional  types  found  in  Korea.  Results  also  suggest  that
controlling VOC and CO emissions, in addition to wide spread NOx controls, can improve ozone
pollution over East Asia.  

1 Introduction

Carbon monoxide (CO) is a good tracer of biomass burning (Crutzen et al., 1979; Edwards et al.,
2004; Edwards et al., 2006) and anthropogenic emission sources (e.g. Borsdorff et al., 2019). It is
also the main sink of the hydroxyl radical (OH) and therefore is important in quantifying the
methane (CH4) sink in the troposphere (Myhre et al., 2013; Gaubert et al., 2016, 2017; Nguyen et
al., 2020). In fact, because of the lack of observational constraints on the OH spatio-temporal
variability,  uncertainties  in  the  atmospheric  CH4 lifetime and its  interannual  variability  have
precluded accurately closing the global CH4 budget (Saunois et al.,  2016; Prather & Holmes,
2017; Turner et al., 2019). There is a need to reduce uncertainties in the main drivers of OH
(National Academies of Sciences, Engineering, and Medicine 2016), which are CO, ozone (O3),
water  vapor  (H2O),  nitrogen  oxides  (NOx),  and  non-methane  volatile  organic  compounds
(NMVOCs).

The evolution of CO in Eulerian chemical-transport is governed for each grid cell by Eq. (1):

δCO
δt

=−ν ⋅∇ [ CO ]+ ∑
i=1

Sectors

Ei+ ∑
i=1

Chemicals

χ i−k [CO ] [ OH ]−kdeposition [ CO ]            (1)

CO has only one chemical sink, its reaction with OH (k [ CO ] [ OH ]¿. The other CO sink is dry
deposition (k deposition [ CO ]) through soil uptake (Conrad, 1996; Yonemura et al., 2000; Stein et al.,
2014,  Liu  et  al.,  2018).  The  direct  sources  are  the  emissions  from different  sectors  Ei,  the
anthropogenic (fossil fuel and biofuel), biomass burning, biogenic and oceanic sources. Locally,
CO can be advected from neighboring grid cells (−ν ⋅∇ [ CO ]) and produced from the oxidation
of NMVOCs ( χ i). Globally, the oxidation of CH4 is the main source of chemically produced CO.
Biogenic and anthropogenic NMVOCs also contribute significantly to secondary CO.

The use of inverse models and chemical data assimilation systems has helped in constraining the
global  CO budget  and associated trends at  global to continental  scales,  particularly with the
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availability  of  long time  series  of  CO retrievals  from the  Measurement  of  Pollution  In  the
Troposphere (MOPITT, Worden et al.,  2013) satellite  instrument (e.g.,  Arellano et  al.,  2004;
Pétron  et  al.,  2004;  Heald  et  al.  2004;  Kopacz  et  al.,  2010;  Fortems-Cheiney  et  al.,  2011;
Yumimoto et al., 2014). Such studies are generally in agreement with regards to the decreasing
long-term trends in CO emissions from anthropogenic and biomass burning sources (Jiang et al.
2015; Yin et al., 2015; Miyazaki et al. 2017; Zheng et al., 2019), although regional emissions
remain  largely  uncertain.  Outstanding  issues  reported  in  the  literature  that  still  need  to  be
resolved include errors in model transport (Arellano and Hess 2006; Jiang et al. 2013), lack of
accurate representation of the atmospheric vertical structure of CO (Jiang et al., 2015), OH fields
(Jiang et al., 2011; Müller et al., 2018), aggregation errors (Stavrakou and Müller, 2006; Kopacz
et al., 2009), and inclusion of chemical feedbacks (Gaubert et al., 2016). Recent studies have
suggested  mitigating  these  issues  by  assimilating  multiple  datasets  of  chemical  observations
(Pison et al.  2009; Fortems-Cheiney et  al.  2012; Kopacz et  al.,  2010; Miyazaki et al.,  2012;
Miyazaki et al., 2015), and the use of different models that use the same data assimilation system
(Miyazaki et al., 2020a). 

Regionally, comparison with in-situ observations of forward and inverse modeling approaches
suggests that several standard inventories of CO emissions in China are too low (e.g. Kong et al.,
2020; Feng et al., 2020). Recently, Kong et al. (2020) compared a suite of 13 regional model
simulations with surface observations over the North China Plain (NCP) and Pearl River Delta
(PRD) and found a severe underestimation of CO, despite the models using the most up-to-date
emissions inventory, the mosaic Asian anthropogenic emission inventory (MIX) (Li et al., 2017).
Using surface CO observations in China, Feng et al. (2020) performed an inversion of the MIX
inventory and found posterior emissions that were much higher than the priors, with regional
differences,  still  pointing  to  a  large  underestimation  in  northern  China.  The  large  posterior
increase of CO emissions in northern China seems to be due to a severe underestimation of
residential coal combustion for heating and potentially for cooking (Chen et al., 2017; Cheng M.,
et al., 2017; Zhi et al., 2017).

While  the  general  underestimation  of  fossil  fuel  burning  in  East  Asia  seems  to  explain  the
underestimation  of  Northern  Hemisphere  (NH)  extratropical  CO  found  in  global  models
(Shindell et al., 2006), there are other confounding factors. Naik et al. (2013) found large inter-
model variability in the regional distribution of OH and an overestimation of OH in the NH. This
is  consistent  with  an  overestimation  of  ozone  (Young et  al.  2013),  which  provides  another
explanation of the CO underestimation. Strode et al. (2015) confirmed that the springtime low
bias in CO is likely due to a bias in OH. This can be caused by a bias in ozone and water vapor,
which are OH precursors. Yan et al. (2014) suggested that these biases could be mitigated by
increasing the horizontal resolution within a 2-way nested model. Stein et al. (2014) suggested
that  anthropogenic  CO  and  NMVOCs  from  road  traffic  emissions  were  too  low  in  their
inventory,  but  also  suggested  that  a  wintertime  increase  in  CO  could  be  due  to  a  reduced
deposition flux. Secondary CO originating from the oxidation of CH4 and NMVOCs could also
play a role in the CO underestimation (e.g. Gaubert et al., 2016).
 
Due to significant efforts in reducing emissions in China, including effective implementation of
clean air policies which started in 2010 (e.g. Zheng et al., 2018), there has been a reduction of
CO emissions of around 27 % since 2010. Bhardwaj et al. (2019) found a decrease of surface
MOPITT CO by around 10 % over the NCP and South Korea during the 2007-2016 period. As
opposed to  NOx emissions  that  have  been decreasing  since  2010,  inventories  suggest  a  net
NMVOCs emissions increase (Zheng et al., 2018). While there are regional differences and no
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trends were observed in satellite retrievals of CH2O for the period 2004 to 2014 over Beijing and
in the PRD (De Smedt et al., 2015), a more recent study suggests an overall increase of VOC
emissions in the NCP by ~25 % between 2010 and 2016 (Souri et al., 2020). Shen et al., (2019)
show that CH2O columns have a positive trend in urban regions of China from 2005 to 2016. Li,
M. et al. (2019) found an increase in NMVOCs emissions from the industry sector and solvent
use while emissions from the residential  and transportation sectors declined,  leading to a net
increase in emissions of NMVOCs. A modeling study suggests that the reduction of aerosols
over northern China has reduced the sink of hydroperoxyl radicals (HO2) which resulted in an
increase in surface O3 concentrations in North Eastern China (Li, K. et al., 2019). The transport
of ozone pollution between source regions makes it difficult to correlate trends in ozone with the
trends in emissions of its precursors (Wang et al., 2017).

Emissions  from  East  Asia  are  known  to  impact  regional  air  quality  (AQ),  and  contribute
significantly  to  surface O3 pollution  at  regional,  continental  and even intercontinental  scales
through trans-Pacific  transport,  in  particular  in  spring  when meteorological  conditions  favor
rapid transport (Akimoto et al., 1996; Jacob et al., 1999; Wilkening et al., 2000; Heald et al.,
2006). Frontal lifting in warm conveyor belts (WCBs) efficiently contributes to the transport of
pollution (Cooper et al. 2004; Zhang et al. 2008; Lin et al. 2012), which can be observed by
satellite retrievals of tropospheric O3 (Foret et al., 2014) and aircraft in-situ measurements (Ding
et al. 2015). However, the mechanisms that cause the uplifted pollution to effectively descend to
the downwind surface layers at regional, continental and intercontinental scales are complex. In
the case of South Korea, one efficient mechanism could be that once lifted from the emission
sources in China,  the higher altitude plumes can pass through the marine atmosphere of the
Yellow Sea without  removal  processes such as dry deposition,  and reach the surface of  the
Korean peninsula during the day, when the boundary layer is high (Lee et al., 2019a; Lee et al.,
2019b).  In  addition,  severe  pollution  episodes  can be due to  local  emissions  under  stagnant
conditions with reduced regional ventilation and lower wind speed (Kim et al. 2017).

The recent literature and findings from the 2016 field campaign over South Korea indicate the
relative importance of O3 precursors and associated transport in this region. The Korea-United
States  Air  Quality  (KORUS‐AQ)  field  campaign  was  a  joint  effort  between  the  National
Aeronautics and Space Administration (NASA) of the United States and the National Institute of
Environmental Research (NIER) of South Korea. The field campaign’s objective was to quantify
the drivers  of  AQ over  the Korean Peninsula  with a  focus  on the  Seoul  Metropolitan  Area
(SMA), currently one of the largest cities in the world. The intensive measurement period was
from May 1 2016 and June 15 2016 with the deployment of a research vessel (Thompson et al.,
2019) and 4 different aircraft: the NASA DC-8, the NASA B200, the Hanseo University King
Air and the Korean Meteorological Agency (KMA) King Air. The aircraft sampled numerous
vertical  profiles  of  trace  gases,  aerosols  and  atmospheric  physical  parameters  with  missed
approach flying procedure over the SMA (e.g. Nault et al., 2018) and spiral patterns over the
Taehwa  Research  Forest  (TRF)  site,  downwind  from the  SMA (e.g.  Sullivan  et  al.,  2019).
Peterson et al. (2019) studied the weather patterns during KORUS-AQ and distinguished  four
distinct  periods defined by different  synoptic  patterns: a  dynamic meteorological  phase with
complex aerosol vertical  profiles, a stagnation phase with weaker winds, a phase of efficient
long-range transport, and a blocking pattern. 

This campaign provides several case studies of foreign-influenced and local pollution episodes.
Miyazaki et al. (2019a) assimilated a suite of satellite remote sensing of chemical observations
and found that under dynamic conditions, when there was efficient transport with uplifting of
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pollution  to  higher  altitudes  (where  the satellite  has  more  sensitivity),  forecasted  ozone was
improved  by  the  assimilation  of  satellite  ozone  retrievals.  On  the  contrary,  under  stagnant
conditions,  forecasted ozone was not improved as much when compared to the DC-8 ozone
measurements, suggesting ozone formation closer to the surface. Lamb et al. (2018) studied at
the vertical  distribution  of black  carbon during KORUS-AQ. Aside from a short  episode of
biomass burning sources from Siberia, they found that the Korean emissions were important in
the boundary layer, with a large contribution from long-range transport from mainland China that
varies with the large-scale weather patterns. There are different ways to quantify the sources
contributing  to  pollutants,  such as Lagrangian  back trajectory,  VOCs signatures,  CO to CO2

ratios and CO “tags” (Tang et al.,  2019). Overall,  direct Korean CO emissions are important
contributors to the boundary layer CO, but not higher up where emissions from continental Asia
dominate. Simpson et al. (2020) performed a source apportionment of the VOCs over the SMA
and also found a significant source of CO from long-range transport with only a smaller CO
source from combustion over Seoul. Since long-range transport is important, the forecasted CO
and water vapor during KORUS-AQ can be improved by assimilating Soil Moisture from the
NASA SMAP satellite (Soil Moisture Active Passive) over China (Huang et al,  2018). They
stress the importance of error sources stemming from chemical initial and boundary conditions
and emissions for modeling CO during two studied pollution events. 

While chemical data assimilation is effective for CO in a global model, because of its longer
lifetime than most of the reactive species, there are some limitations if the parameters, such as
emissions inventories inputs or physical and chemical processes, are not updated consistently
with the initial conditions (Tang et al., 2013). The KORUS-AQ campaign provides a large array
of measurements and is an excellent case study for testing the model with challenges that need to
be addressed for further improvements of CO and related species of interest such as OH, O3, CH4

and NMVOCs. Here we take advantage of the concurrent measurements during the campaign to
investigate  the  reasons for  the  CO underestimation  and we attempt  to  answer the  following
question:  Can  we  explain  why  CO  is  consistently  underestimated  over  East  Asia,  using  a
Chemical Transport Model, field campaigns and satellite data assimilation?

We outline the set of observations used to verify and evaluate our chemical data assimilation
system in Section  2.  The modeling  system is  presented  in  Section  3,  the  Data Assimilation
system in Section 4, the evaluation of the data assimilation results in Section 5. The comparison
of emissions estimates and additional sensitivity experiments in Section 6. 

2 Field campaign observations

2.1 The Korea United States Air Quality (KORUS‐AQ) field campaign

The KORUS-AQ campaign provides a unique testbed for comparing surface and aircraft in-situ
observations  with  ground-based  and  satellite-based  remote  sensing  (Herman  et  al.  2018),
particularly  important  for  the targeted  short-lived species  such as formaldehyde (CH2O) and
nitrogen dioxide (NO2). Miyazaki et al. (2019a) showed that the background O3 measured by the
DC-8 during KORUS-AQ ranges from 72 to 85 ppbv between the surface and 800 hPa over the
Korean Peninsula. On top of these large background values, large emissions from the SMA are
responsible for the strong formation of secondary organic aerosols (Kim et al., 2018; Nault et al.,
2018) and O3, which can be further enhanced by biogenic emissions eastward of Seoul (Sullivan
et al.,  2019). Large ozone production is a result  of emissions from areas characterized to be
VOC-limited,  such  as  the  urbanized  SMA  and  industrialized  regions  into  a  NOx-limited
environment over rural and forested regions. Both Oak et al. (2020) and Schroeder et al. (2020)
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examined O3 production during KORUS-AQ with a focus on the SMA and surrounding regions
and reported a higher ozone production efficiency over the rural areas. They pointed out higher
ozone sensitivity to aromatics, followed by isoprene and alkenes. Observations over the Taehwa
Research Forest east of Seoul show strong ozone production (Kim et al., 2013) because of large
emissions of reactive biogenic VOCs, in particular isoprene and monoterpenes. 

Figure 1: Location of all the KORUS-AQ DC-8 1-min merge measurements (red dots), and of the ARIAs Y-
12 1-min merge measurements (green dots). The location of some major cities is also indicated (blue dots). 

We evaluate the model output against the DC-8 aircraft measurements, shown in red in Figure 1,
which  simultaneously  provide  many  physical  and  chemical  parameters  of  the  tropospheric
chemistry environment system (appendix A). We use the 1-minute merge file of DC-8 in-situ
observations.  Model  outputs  were  linearly  interpolated  to  the  exact  location  of  the  DC-8 in
latitude, longitude, pressure altitude and in time, from the 6 hourly model outputs. During the
whole campaign, Simpson et al.  (2020) showed that high benzene concentrations (> 1 ppbv)
were only found close to the Daesan petrochemical complex. Since those large gradients of local
plumes simply cannot be modeled in a global model, we systematically rejected observations
when  the  benzene  proton-transfer-reaction  time-of-flight  mass  spectrometer  (PTR-ToF-MS)
measurements were higher than 1 ppb.
 
In order to evaluate the CO sink and the impact of the assimilation of MOPITT CO retrievals on
the HOx levels, we used the OH and HO2 calculated with the NASA Langley Research Center
(LaRC) 0-D time-dependent photochemical box model (Schroeder et al., 2020). This box model
is constrained by measured temperature and pressure, photolysis rates derived from actinic flux
observation and observations of O3, NO, CO, CH4, CH2O, PAN, H2O2, water vapor, and non-
methane hydrocarbons. The production and loss terms of ozone is calculated for every single 1
Hz DC-8 set of observations. This is the only case where we use the 1-second merge file instead
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of the 1-min merge dataset file. CAM-chem outputs are interpolated accordingly. While there are
some limitations for the species with longer lifetimes, subject to physical processes that are not
represented, the box model has been specifically designed to estimate radical concentrations. The
details and sensitivity of the calculation are described in Schroeder et al. (2020).

2.2 The ARIAs campaign

The Air Chemistry Research In Asia (ARIAs) field campaign was conducted in May and June
2016 with the goal of better quantifying and characterizing air quality over the NCP (Benish et
al.,  2020;  Wang et  al.  2018).  The instrumented  Y-12 airplane  was operated  by the Weather
Modification  Office  of  the  Hebei  Province  to  measure  meteorological  parameters,  aerosols
optical properties and trace gases. The airplane was based in Luancheng Airport, southeast of
Shijiazhuang, the capital of Hebei Province, and flew vertical spirals from ~300m to ~3500 m
over the cities of Julu, Quzhou, and Xingtai (Fig. 1). There were 11 research fights between May
8, 2016 and June 11, 2016. Wang et al.  (2018) identified three different Planetary Boundary
Layer (PBL) structures with distinct aerosol vertical structure. The aerosol pollution was mostly
located below an altitude of 2 km, but sometimes with a vertically inhomogeneous structure,
with higher aerosols at higher altitudes than at the surface but still in the boundary layer. These
vertical structures were mostly observed when the pollution originated from the southwest and
from the eastern coastal region of the study domain, while cleaner air masses originated from the
northwest. CO was measured by Cavity Ring Down Spectroscopy by the Picarro Model G2401-
m instrument with a 5-second precision of 4 ppbv and an estimated accuracy of ±1% and O3 by
UV-absorption using a Thermal Electron Model 49C ozone analyzer. O3 values ranged from 52
ppbv to 142 ppbv, partly because flight days were chosen to target meteorological conditions
favorable to smog events (Benish et al., 2020). CO concentrations ranged from 91 ppbv to about
2 ppmv (Benish et al.,  2020). The pervasive high levels of CO correlated with SO2 indicate
extensive low-tech coal combustion. We rejected individual CO observations (about 5% of total
CO observations) when SO2 was greater than 20 ppbv (the 95th percentile of all observations) to
remove the extremely polluted plumes.

3 Model configuration and improvements 

3.1 Community Atmosphere Model with Chemistry (CAM-chem)

We use the open-source Community Earth System Model version 2.1 (CESM2.1); an overview
of the modeling system and its evaluation is presented in Danabasoglu et al. (2020). It contains
many  new  scientific  features  and  capabilities,  including  an  updated  coupler,  the  Common
Infrastructure for Modeling the Earth (CIME), which allows for running an ensemble of CESM
runs, in parallel with a single executable. The atmosphere is modeled using the finite volume
dynamical core of the Community Atmosphere Model version 6 (CAM6) with 32 vertical levels
and a model top at 3.6 hPa, and a 1.25° (in longitude) by 0.95° (in latitude) horizontal resolution
(Gettelman  et  al.,  2019).  The  model  now  uses  a  unified  parameterization  of  the  planetary
boundary layer (PBL) and shallow convection, the Cloud Layers Unified by Binormals (CLUBB,
Bogenschutz et al. 2013). Other updates on the model physical parameterizations are described
in Gettelman et  al.  (2019).  The new Troposphere and Stratosphere (TS1) reduced gas phase
chemical mechanism contains 221 species and 528 reactions (Emmons et al., 2020), and thus
explicitly  represents  stratospheric  and  tropospheric  ozone  and  OH chemistry.  This  chemical
scheme contains many updates, including on the isoprene oxidation mechanism, splitting a single
aromatic into BENZENE, TOLUENE and XYLENES lumped species and a terpene speciation.
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The overall setup of CESM2.1 has been updated following the protocol of the Coupled Model
Intercomparison Project Phase 6, which includes solar forcings (Matthes et al., 2017), surface
greenhouse gases boundary conditions (Meinshausen et al., 2017) and anthropogenic emissions.
Therefore, we use the anthropogenic emission inventory of chemically reactive gases that has
been generated by the Community Emissions Data System (CEDS, Hoesly et al., 2018). We use
the latest year available (2014) for the KORUS-AQ period (2016). It is commonly acknowledged
that errors in the emission inventory for China are much larger than the trends between different
years (Feng et al., 2020). Anthropogenic emissions over East Asia are replaced by the KORUS
inventories  version  5  or  KORUS v5,  based  on  the  Comprehensive  Regional  Emissions  for
Atmospheric  Transport  Experiment  (CREATE)  (Woo et  al.,  2012).  Daily  Biomass  Burning
emissions  are  obtained  from  the  Fire  Inventory  from  NCAR  (FINN  v1.5)  version  1.5
(Wiedinmyer et al., 2011). Biogenic emissions are modeled within the Community Land Model,
using the algorithms of the Model of Emissions of Gases and Aerosols from Nature (MEGAN
v2.1) (Guenther et al., 2012). A summary of the model references is presented in Table 1. We
have made some additional changes for this study, presented in Appendix B. In particular, we
updated the heterogeneous uptake coefficient of HO2 and its coefficient. 

Table 1: Summary of the main model components and references for CESM2.1 / CAM6-Chem.
Model component Reference
Community Earth System Model Version 2.1 (CESM2.1) Danabasoglu et al., 2020
Community Atmosphere Model version 6 (CAM6) Gettelman et al., 2019 
Tropospheric and Stratospheric chemistry scheme (TS1)  Emmons et al., 2020
Organic aerosol scheme (with Volatility Basis Set) Tilmes et al., 2019
Modal Aerosol Module (MAM4) Liu et al., 2016
Community Land Model (version 5) Lawrence et al., 2019
Model of Emissions of Gases and Aerosols from Nature (version 2.1) Guenther et al., 2012
Inputs
Community Emissions Data System (CEDS) Hoesly et al., 2018
Comprehensive Regional Emissions for Atmospheric Transport 
Experiment (CREATE) version 5 or KORUS v5 Woo et al., 2012

Fire Inventory from NCAR (FINN v1.5) version 1.5 Wiedinmyer et al., 2011
Greenhouse gases prescribed fields Meinshausen et al., 2017
Methane net surface fluxes Saunois et al., 2020

3.2 Sensitivity test on the biogenic emissions

The KORUS-AQ campaign was subject to photochemical episodes with large concentrations of
secondary  aerosols  and  ozone  (e.g.  Kim H.  et  al.,  2018).  There  is  a  significant  amount  of
biogenic emissions from the South Korean forests including deciduous oak trees (Lim et al.,
2011)  and conifers  such as  the  Korean pine  (Pinus  koraiensis),  both  of  which  surround the
Taehwa Research Forest site. As a result, there are large emissions from a variety of compounds,
such  as  isoprene,  monoterpenes  and  sesquiterpenes,  which  contribute  to  enhanced  ozone  in
favorable conditions (Kim S. Y. et al., 2013; Kim S. et al., 2015, 2016; Kim H.-K et al., 2018).
Oak et al. (2020) showed that the largest ozone production efficiency was in the rural areas of
South Korea, where biogenic emissions are dominant. Kim et al. (2014) studied how the Plant
Functional  Type  (PFT)  distributions  affect  the  results  of  biogenic  emission:  broadleaf  trees,
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needleleaf trees, shrub, and herbaceous plants are significant contributors to BVOCs in South
Korea. They found large sensitivities of calculated biogenic emissions to 3 different PFT datasets
over Seoul, which resulted in local but significant changes  in simulated O3.  We performed a
sensitivity analysis to the biogenic emissions by increasing the emission factors for three of the
Community Land Model PFT that are present in Korea, the “Needleleaf Evergreen Temperate
Tree”,  the “Broadleaf  Evergreen Temperate  Tree”,  and the “Broadleaf  Deciduous Temperate
Tree”. We perform a set of simulations by varying biogenic emissions to determine the best fit to
the observations of formaldehyde (CH2O) at the surface (see SI). For the sake of clarity, we will
present one experiment denoted as CAM_MOP-Bio (see Sect. 4.6).

4. Chemical data assimilation system

4.1 Data Assimilation Research Testbed (DART) implementation

The Data  Assimilation  Research  Testbed (DART) is  an  open source  community  facility  for
ensemble data assimilation developed and maintained at the National Center for Atmospheric
Research  (Anderson  et  al.,  2009a).  DART  has  been  used  in  numerous  studies  for  Data
Assimilation (DA) within CESM (Hurrell et al., 2012, Danabasoglu et al., 2020). Global DA
analyses have been carried out with assimilation of conventional meteorological datasets within
the Community Atmosphere Model (CAM, Raeder et al. 2012), the Community Land Model
version 4.5 or CLM4.5 (Fox et al. 2018), and in a weakly coupled atmospheric assimilation in
CAM and oceanic  assimilation in the Parallel  Ocean Program ocean model  (Karspeck et  al.
2018). The Chemical Data Assimilation system inherits  from previous work that coupled the
Ensemble Adjustment Kalman Filter (EAKF) analysis algorithm (Anderson et al.,  2001) with
CAM-chem.  The  DART/CAM-chem is  designed  for  efficient  ensemble  data  assimilation  of
chemical and meteorological observations at the global scale (Arellano et al., 2007; Barré et al.,
2015; Gaubert et al., 2016, 2017).

4.2 DART/CAM-chem analysis and forecast algorithm

The  analysis  is  carried  out  using  a  deterministic  ensemble  square  root  filter,  the  Ensemble
Adjustment  Kalman Filter  (EAKF) (Anderson 2001, 2003). The ensemble of 30 CAM-chem
members is run with a single executable of CESM using the multi-instance capability. At the
analysis  step,  the  following  model  variables  are  updated  when  weather  observations  are
assimilated:  surface  pressure,  temperature,  wind components,  specific  humidity,  cloud liquid
water  and cloud ice.  Assimilated  observations  include radiosondes,  Aircraft  Communication,
Addressing, and Reporting System (ACARS), but also remotely sensed data including satellite
drift winds and Global Positioning System (GPS) Radio Occultation. We use a similar setup as
previous studies (Barré et al., 2015; Gaubert et al., 2016, 2017) with a spatial localization of 0.1
radians  or  ~600  km  in  the  horizontal  and  200  hPa  in  the  vertical  for  both  chemical  and
meteorological observations. We now use the spatially and temporally varying adaptive inflation
enhanced  algorithm  (El  Gharamti  2018),  that  generalizes  the  scheme  of  Anderson  (2009b).
Multiplicative covariance inflation is applied to the forecast ensemble before each analysis step. 

4.3 MOPITT assimilation

As  in  previous  implementations,  both  CO  retrievals  from  MOPITT  and  meteorological
observations are simultaneously assimilated within the DART framework. We assimilate profiles
of retrieved CO from the MOPITT nadir sounding instrument onboard the NASA Terra satellite.
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The  MOPITT  V8J  product  (Deeter  et  al.,  2019)  is  a  multispectral  retrieval  using  the  CO
absorption in the Thermal Infra-Red (TIR, 4.7  μm) and Near Infra-Red (NIR, 2.3  μm) bands
(Worden et al., 2010). The objective is to maximize the retrieval sensitivity to the lower layers of
the atmosphere while minimizing the bias. We apply the same filtering thresholds that are used
to create the L3 TIR-NIR product, which exclude all observations from Pixel 3 in addition to
observations where both (1) the 5A signal to noise ratio (SNR) is lower than 1000 and (2) the 6A
SNR is lower than 400. We apply the strictest retrieval anomaly flags (all from 1 to 5). We only
assimilate daytime measurements, where latitudes are lower than 80 degrees and when the total
column degrees of freedom are higher than 0.5. Super-observations are produced by applying an
error-weighted average of the profiles (Barré et al., 2015) on the CAM-chem grid, with no error
correlation since we consider those to be minimized by a strict use of the quality flags, as in
Gaubert et al. (2016). In general, MOPITT data have errors smaller than 10% (Tang et al., 2020;
Hedelius et al., 2019), which is much lower than model errors. We evaluate our assimilation
results with fully independent aircraft observations. 

4.4 Ensemble design 

The ensemble of prior emissions is generated by applying a spatially and temporally correlated
noise to the given prior emission field, as in previous studies (Gaubert et al., 2014, 2016, 2017;
Barré et al., 2015, 2016). Emission perturbations are generated from a two-dimensional Gaussian
distribution with zero mean and unitary variance (Evensen, 2003), with a fixed spatial correlation
length. Here we applied the same set of perturbations for every time step, thus the prior ensemble
has a temporal correlation of 1. A different noise distribution is drawn for Biomass Burning (BB)
CO emissions than for anthropogenic direct CO emissions, with a decorrelation length of 250 km
for BB, and 500 km for direct  anthropogenic CO. Thus, as opposed to the previous studies,
anthropogenic and BB CO sources are completely uncorrelated in the prior ensemble. The same
noise  is  then  applied  to  all  the  species  emitted  by  the  same  source,  BB  or  anthropogenic,
including NMVOCs, the non-organic nitrogen species, SO2, and aerosols. This means the added
noise  in  emissions  of  NMVOCs  and  CO  from  the  BB  or  anthropogenic  sectors  will  be
completely correlated. We generated another noise sample with a decorrelation length of 500 km
for soil emissions of NO.
The ensemble  spread in  the  model  physics  variables  is  important  for  CO, which  is  directly
sensitive to errors in horizontal and vertical winds (both boundary layer height and convection),
as well as surface exchange, and indirectly through the impact of dynamics and physics on other
chemicals. In particular, a spread in the MEGAN estimates of direct and indirect CO emissions
from biogenic sources will be generated from the different atmospheric states passed to the land
model. We assigned a spatially and temporally uniform noise drawn from a normal distribution
with a standard deviation of 0.1 to the CH4 emissions. More work will be done to generate a
realistic spread in CH4 emissions, but that is beyond the scope of this study. The ensemble spin-
up starts on April 1 2016 with perturbed emissions described above and with a spread in nudging
parameters to perturb the dynamics. After a week, on April 7 2016, the Control-Run ensemble is
initialized from the spin-up, this simulation is not nudged and this period is used to spin-up the
inflation parameters for the assimilation of the weather observations only. The MOPITT-DA run
is initialized from the Control-Run ensemble on April 15 2016.

4.5 Variable localization and parameter estimation

The  multivariate  error  background  error  covariance  allows  for  an  estimation  of  the  error
correlation between the adjusted model variables or state vector and observations. As in previous
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studies we choose a strict “variable localization” (e.g. Kang et al., 2011), because (1) it is easier
to quantify the impacts of the assimilation, such as the chemical response (Gaubert et al., 2016),
as well as the model and observations errors (Gaubert et al., 2014); (2) spurious correlation can
have a strong impact on the non-assimilated species that have no constraints. This strict variable
localization means that the assimilation of MOPITT only corrects the chemical state vector (i.e.
CO) and has no impact  on the meteorological  state  vector  (U, V, T,  Q, Ps) and vice-versa.
However,  we  made  an  exception  and  extended  our  chemical  state  vector  by  including  CO
emissions  from BB and  anthropogenic  sources  separately  and several  NMVOCs.  We added
C2H2,  C2H4,  C2H6,  C3H8,  benzene,  toluene,  and  the  XYLENES,  BIGENE and  BIGALK
surrogate  species  to  the state  vector.  The NMVOCs with a  strong anthropogenic  and/or  BB
origin that have a primary sink with OH should be strongly correlated with CO (Miyazaki et al.,
2012). The relationships between NMVOCs and CO leads to a correlation in their errors, so that
the correlation existing in the ensemble will reflect those true errors. In addition to the initial
spread described above, spatially and temporally varying adaptive inflation is also applied to the
optimized CO Surface Flux (SFCO) model variable during the analysis procedure.
In  CAM-chem,  a  diurnal  profile  is  not  applied  to  the  emissions,  instead  emissions  are
interpolated from the dates provided in the inventories, which is daily for BB and monthly for
anthropogenic sources. The relative increments obtained from the analysis in the form of the
surface  fluxes  model  variable  (SFCO)  is  propagated  back  to  the  input  files  emissions  (E)
following: 

Ei
analysis

=E i
prior

(1+w
∆ SFCOi

SFCOi

)  (2)

where  i is  an  ensemble  member  and  w=a e
−t
τ  is  a  weight  to  represent  the  temporal

representativeness and to limit the impact of spurious correlation. At the analysis time (t=0), the
weight will be w=a, with a=0.8, i.e. 80 % of the initial increments in Eq. 2. For the other time
steps t, the exponential decay characteristic time, τ, is set to 4 days in the case of BB and 4
months in the case of anthropogenic emissions.  The impact  of the increments  will  therefore
decrease exponentially for the other time steps t from 0.8 to 0, which is imposed (bounded) for
2τ (8 months or 8 days). This makes a strong correction for the current time and the closest time
step.  This  allows  for  smoothing  the  increments  over  time  while  hopefully  leading  to  a
convergence through the sequential correction of the emissions during the assimilation run. 

4.6 Simulations overview

In  section  5,  two  simulations  with  the  assimilation  of  meteorological  observations  will  be
presented, the Control-Run and the MOPITT-DA and the difference between the two simulations
is the assimilation of MOPITT in the MOPITT-DA run. In the MOPITT-DA assimilation run,
the  initial  conditions  of  CO  and  some  NMVOCs,  and  CO  emission  inventories  from
anthropogenic  and  biomass  burning  sources,  are  optimized  during  the  analysis  step.  The
summary of the simulations presented in the following sections is presented in Table 2.
In  section  6,  we  compare  our  emission  estimates  with  a  state-of-the-art  chemical  data
assimilation and inversion system, the Tropospheric Chemistry Reanalysis version 2 or TCR-2
(Miyazaki et al., 2019b, Miyazaki et al., 2020b). They assimilate a variety of satellite instruments
using the Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. 2007) with the MIROC-
chem model (Wanatabe et al. 2011). The setup is fully described and evaluated in Miyazaki et al.
(2020b). We regridded the anthropogenic prior and posterior CO estimate from their 1.125° ×
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1.125° mesh grid to the CAM-chem grid. In the TCR-2, the prior anthropogenic emission is
HTAP v2 for 2010 (Janssens-Maenhout et al., 2015).
Additional sensitivity tests will be performed using deterministic CAM-chem simulations (Table
2)  and  presented  in  section  7.  In  this  case,  since  no  meteorological  data  assimilation  is
performed, the dynamics from the prognostic variables U, V, and T need to be nudged towards
the NASA GMAO GEOS5.12 meteorological analysis in order to reproduce the meteorological
variability. The GEOS analysis is first regridded on the CAM-chem horizontal and vertical mesh.
The nudging is driven by two factors: the strength, a normalized coefficient that ranges between
0 and 1; and the frequency of the nudging, here configured to use 6-hourly outputs from either
the GEOS5 reanalysis or our own DART CAM-chem Control-Run. Based on an ensemble of
sensitivity tests (SI), we use the nudging setup that minimizes the meteorological errors for the
KORUS-AQ  observations.  This  best  simulation  is  the  g-post-0.72,  hereafter  denoted  as
CAM_Kv5 (Table  2),  and will  serve  as  a  reference  for  the  additional  sensitivity  simulation
experiments.  Aside from the Control-Run and the MOPITT-DA, the CAM-chem simulations
have  the  same nudging  setup,  and  only  differ  by  the  CO anthropogenic  emissions  flux.  In
addition, the CAM_MOP-Bio is the same as the CAM_MOP but with an overall increase in the
MEGAN emission factor. Note that the simulations denoted as CAM_HTAP (TCR-2 Prior) and
CAM_TCR-2 (TCR-2 Posterior) are CAM-Chem simulations with the respective anthropogenic
CO  emissions  from  TCR-2.  We  also  use  the  Copernicus  Atmosphere  Monitoring  Service
(CAMS) global bottom-up emission inventory (Granier et al. 2019; Elguindi et al., 2020). We
use the CAMS-GLOB-ANTv3.1, which has only minor changes with regards to the most recent
version (v4.2). The gridded inventory is available at a spatial resolution of 0.1° × 0.1° and at a
monthly temporal resolution for the years 2000-2020. It is built on the EDGARv4.3.2 annual
emissions (Crippa et al., 2018) and extrapolated to the most current years using linear trends fit
to the years 2011-2014 from the CEDS global inventory. We included artificial CO tracers or
“CO tags”, to track the anthropogenic contribution from different geographic area sources (e.g.,
Gaubert et al., 2016). 

Table 2: Summary of the simulations. The Nudging (GEOS) refers to a CAM-Chem deterministic runs with
specified dynamics, using a nudging to GEOS-FP analysis winds and temperatures (see supplement). Aside
from the DART simulations (first 2 rows), all the simulations have the same initial conditions and the same
nudging and only change by their anthropogenic CO emissions inputs.
Simulation name Meteorology Emissions (prior)
Control-Run Assimilation (DART) Prior (CEDS-KORUS-v5)
MOPITT-DA Assimilation (DART) Optimized (CEDS-KORUS-v5)
CAM_Kv5 Nudging (GEOS) Prior (CEDS-KORUS-v5)
CAM_HTAP Nudging (GEOS) Prior (HTAP v2)
CAM_MOP Nudging (GEOS) Posterior (CEDS-KORUS-v5)
CAM_MOP-Bio Nudging (GEOS) Posterior (CEDS-KORUS-v5) + MEGANx2 (see SI)
CAM_TCR-2 Nudging (GEOS) Posterior (TCR-2, HTAP v2)
CAM_CAMS Nudging (GEOS) CAMS (CAMS-GLOB-ANTv3.1)

5 Assimilation results: Evaluation of the posterior CO during KORUS-AQ

We use the fully independent DC-8 Differential Absorption CO Measurement (DACOM CO)
measurements to evaluate the MOPITT assimilation. Figure 2 compares the averaged vertical
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profiles for the 4 different mission weather regime phases (Peterson et al., 2019) and the average
and standard deviation of all the flights. Observed background CO in the upper free troposphere
is between 100 ppbv and 125 ppbv and shows a variation of around 10 % between the different
phases. The Control-Run shows an average background between 70 ppbv and 100 ppbv for the
four phases and 80 ppbv for the full KORUS-AQ period, while the MOPITT-DA varies between
80 ppbv and 110 ppbv for the 4 phases with an average of 90 ppbv for the KORUS-AQ period.
The RMSE in MOPITT-DA is reduced by around 10 ppbv compared to the Control-Run for the
free troposphere (700 hPa to 300 hPa, Fig. 2).
 
For the layers closer to the surface, the temporal variations are much stronger. During Phase 3,
observed CO is 44 % and 30 % higher than the campaign average at 850 hPa and 950 hPa,
respectively.  While this feature is much better  reproduced after assimilation,  absolute RMSE
values  remain  large.  Overall,  the  bias  is  greatly  reduced for  the  MOPITT-DA in the  layers
between  850 hPa  and 650 hPa.  We note  that  the  mean  CO is  still  lower  than  the  average
observations. The MOPITT-DA shows at the 950 hPa and 850 hPa levels an underestimation of
around 30 ppbv, i.e. between 10 % and 20 % lower than the observations. This is in the range of
the expected performance given the retrieval uncertainties (10 %) and the spatial footprints of
MOPITT pixels (22km x 22km)
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Figure 2: Average CO profiles (left panels) and related RMSE (right panels) for the Control-Run and the
MOPITT-DA. The mean (black line) and standard deviation (shaded grey) of the DC-8 observations are
calculated for each 100 hPa bin. The first 4 rows are averaged over the different weather regimes of the
campaign (Peterson et al. 2019). The last row displays the average over the whole campaign. 

5.1 VOCs state vector augmentation

Concentrations  of  some  VOCs  have  been  added  to  the  state  vector  and  are
therefore optimized, according to the covariance estimated by the ensemble, when
MOPITT  observations  are  assimilated.  This  setup  will  only  provide  meaningful
corrections  if  CO  and  VOCs  errors  are  highly  correlated  through  common
atmospheric and emission processes and if the ensemble samples those errors in
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the  background  error  covariance.  In  this  case  VOCs  analysis  errors  should  be
reduced by assimilating MOPITT CO, even though VOCs are not directly observed.

Table 3: VOCs added to the state vector, corresponding measuring instrument, and lifetime (Simpson et al.,
2020) used for validation. For comparison with surrogate species,  the sum of all the corresponding VOC
observations is used. WAS stands for Whole Air Sampler.

Model
Variable Observations Lifetime

(days)
C2H6 ethane (WAS) 48
C2H2 ethyne (WAS) 15
C3H8 propane (WAS) 11

BENZENE benzene (PTRMS) 9.5
BIGALK i-butane, n-butane, i-pentane, n-pentane, 3.5 +/- 1.6

n-hexane, n-heptane, n-octane, n-nonane, n-decane (WAS)
TOLUENE toluene (PTRMS) 2.1

C2H4 ethene (WAS) 1.5
XYLENES mp-xylene, o-xylene (WAS) 0.7 +/- 0.2

BIGENE 1-butene, i-butene, trans-2-butene, cis-2-butene, 1-3-
butadiene (WAS) 0.2 +/- 0.1

The  list  of  optimized  VOCs  is  shown  in  Table  3,  together  with  their  lifetime  and  the
corresponding species from the Whole Air Sampler (WAS) instrument used for evaluation. An
increase in concentration is found for all 9 VOCs in the MOPITT-DA simulation, either because
of the state augmentation, and/or because of the reduction in OH due to CO adjustments. Even if
the changes are small, this can lead to an increase in errors for the vertical profiles compared to
observations when the species is already overestimated in the lower layer of the atmosphere.
This is the case for C2H4 and BIGENE, the only two species that have substantial biogenic and
fire  sources,  as  well  as  for  xylenes  and  toluene.  For  all  the  other  species,  which  are
underestimated  and  are  mostly  from  anthropogenic  sources,  the  assimilation  leads  to  an
improvement compared to the observations, mostly by reducing their biases. The best results are
obtained for ethane and to a lesser extent propane (Fig. 3). Despite the broad anthropogenic
source, ethane and propane originate from sectors that are quite different from CO. However,
CO,  ethane  and  propane  have  one  thing  in  common  which  is  that  their  only  atmospheric
chemical sink is through OH oxidation. This suggests that a bias in OH leads to correlated errors
between CO and alkanes that can be mitigated by including these species to the state vector.

We define a metric of improvement based on the relative change in RMSE that is positive when
the RMSE is reduced. Figure 3 shows a clear  dependence of this  metric  on the atmospheric
lifetime  of  the  VOCs.  All  the  modeled  VOCs with a  lifetime  shorter  than  5 days  show an
increase in errors, while all the VOCs with a lifetime greater than 10 days are improved, with the
largest improvement for ethane, which has a lifetime of 48 days. The relatively large spatial and
temporal scales of CO that arise due to its medium atmospheric lifetime significantly limit the
ability of CO assimilation to resolve the high-frequency changes in those compounds with short
lifetimes.  More  importantly,  this  is  also  to  be  expected  given  the  limited  sensitivity  of  the
MOPITT observations to boundary layer CO.
While satellite observation spatiotemporal  resolution and sampling might be improved in the
future, NMVOCs with a lifetime shorter than several days should not be included in the state
vector  when  assimilating  CO.  However,  the  concentrations  of  NMVOCs  with  strong
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anthropogenic or BB sources and similar chemical characteristics to CO might be significantly
improved by the assimilation. We believe that this could also be true for methane. 

Figure 3: Atmospheric lifetime (from Simpson et al., 2020) in days for the VOCs added to the state vector.
Xylenes,  BIGALK and BIGENES are surrogate  species,  so an average of the lifetimes  is calculated. The
relative error change is the opposite of the difference in Root Mean Square Error relative to the Control-Run
(i.e.,  (Control-Run-MOPITT-DA)/Control-Run).  Thus,  a  positive  relative  error  change  means  an
improvement compared to the Control-Run.

5.2 Chemical response from MOPITT-DA

This section presents a short summary of the impact of the CO assimilation on the chemical state
of the atmosphere and the comparison with unobserved species.  Figure 4 shows the average
vertical profiles for OH, HO2, NO, NO2, CH2O and O3. We use simulated OH and HO2 from the
observationally constrained NASA LaRC box model (Schroeder et al., 2020). The Control-Run
and the LaRC box models agree on the mean OH spanning the first two binned layers, at lower
altitudes. Aloft, the Control-Run overestimates the LaRC box model simulations. The Control-
Run underestimates HO2, which suggests that the excellent agreement on OH in the boundary
layer is likely caused by compensating errors. That is, the increase of CO through the MOPITT
assimilation  decreases  the  OH  concentrations  (Gaubert  et  al.,  2016).  Here,  we  find  better
agreement of the model OH with the observationally constrained LaRC box model simulation at
750 hPa and above. This in turn increases HO2 and shows a better match with the LaRC box
model. This suggests that a small part of the HO2 underestimation can be explained by the CO
underestimation.  NO  and  NO2 are  reasonably  well  modeled  for  the  surface  layer,  but  are
underestimated above, with a large underestimation at 850 hPa. The underestimation of NOx

might explain the underestimation of HO2. Additional comparison with HNO3, J(O3), J(NO2) and
H2O2 and PAN are shown in Figure S2. It suggests that the underestimation of NO x could be due
to the underestimation of J(NO2) and the overestimation of HNO3. Despite the update of the HO2

heterogeneous uptake reaction and coefficient presented in appendix B, the CO increase leads to
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higher levels of H2O2, and the bias is therefore higher in the MOPITT-DA than the Control-Run
(Figure S2). A lower value of the HO2 heterogeneous uptake coefficient than the one used here
(γ=0.1) might produce better results by reducing the HO2 sink (see Appendix B). It suggests that
errors in NOx and related chemistry drive the underestimation of HO2 and of the sum of OH and
HO2 (HOx). Overall, HOx is underestimated, and OH is fairly well simulated. This suggests that
the  CO  chemical  sink  alone  cannot  explain  the  CO  underestimation  during  the  campaign.
Alternatively, CH2O is underestimated in both simulations, suggesting an underprediction of the
chemical production of secondary CO. A similar effect to that described in Gaubert et al. (2016)
is shown, where an increase in CO through the sequential assimilation leads to reduced OH and
is slowing down of the VOC oxidation rate and formaldehyde formation, albeit a small effect. In
the lower part of the atmosphere, the oxidation of additional CO leads to more effective ozone
production and no changes above, consistent with observations.  While the errors in NOx are
important, the low CH2O points to a missing source, which could be due to an underestimation of
CH4 as well as NMVOCs (Appendix B).
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Figure 4: Average vertical profiles of OH (top left) HO2 (top right) for the 1-sec merge and the LaRC box
model  estimates  (Schroeder et  al.,  2020).  Results  are  shown for DC-8 1-min merge  observations  for NO
(middle left), NO2 (middle right), CH2O (bottom left) and O3 measurements (bottom right). The shaded area
corresponds to the standard-deviation around the observed mean.
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6. Comparison of anthropogenic emission estimates

We show in Figure 5 the emissions of the prior (CEDS-KORUSv5), and its posterior, estimated
through the DART/CAM-chem inversion. It also shows the prior (HTAP v2) from the TCR-2
and its posterior estimate, for which CO emissions are also constrained by MOPITT. We also
show the CAMS emissions.

Figure 5: Emissions flux for May 2016 in MgCO.month-1.  Prior (A, CEDS-KORUS v5),  TCR-2-Prior (B,
HTAP v2) and the difference between the 2 priors (C,  TCR-2-Prior – Prior).  The second row shows the
Posterior (D, estimated by DART/CAM-Chem), the TCR-2 (E) and the difference between the 2 posteriors.
The last row shows the emissions increments, the difference between the Posterior and the Prior (G) and
between TCR-2 and TCR-2-Prior (H). The CAMS emissions are shown on the last panel (I).

Compared to the prior (Fig. 5a), our posterior estimate (Fig. 5d) shows a reduction around the
Guizhou  province,  in  southwest  China.  Larger  changes  are  observed  for  the  Shandong  and
Henan provinces  in  central  China  and over  the  Yangtze  River  Delta  (Fig.  5g).  Increases  in
emissions are also large in the NCP and the Liaoning Province. While both inversions show large
increase over  northern China (Fig.  5g,  h),  the spatial  patterns  of the emissions  are  different
between the posterior and the TCR-2 for northern China. The TCR-2 emission increments are
located more in the NCP and North Korea (Fig. 5f). Large differences can be identified in central
China in particular over the YRD (Fig. 5h. The Shanghai megacity emissions are higher in the
DART/CAM-chem posterior (Fig. 5d) and the TCR-2 prior (Fig. 5b) than in the TCR-2 posterior
(Fig. 5e). A more consistent pattern of larger emissions in the TCR-2 compared to our posterior
is found in southern China and the Sichuan province (Fig. 5f and Fig. 5h). Prior emissions of
CO, biogenic and anthropogenic VOCs and NOx can all contribute to differences between the
TCR-2 and our DART/CAM-chem estimate. Another important aspect is the 500 km correlation
length initial perturbation to generate the ensemble of anthropogenic emissions, combined with a
similar localization radius of ~600 km, which explains the large-scale increments found in the
DART/CAM-chem emissions increments (Fig 5g). The TCR-2 prior show more emissions over
North Korea than South Korea (Fig 5b) and the opposite is true for the DART/CAM-Chem prior
(Fig 6c). This is reflected in the posterior where the TCR-2 has more emissions in North Korea
than the DART/CAM-Chem posterior (Fig. 5f). Compared to its prior, the DART/CAM-Chem
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posterior emissions are increased by 25 % for South Korea, and by 34 % over the SMA. While
the CAMS emissions are generally lower (Fig. 5i), the South Korean emissions are larger than in
all the other inventories.

Our inversion suggests an underestimation of bottom-up emission inventories for China. The
agreement between the posterior emissions for Central China is better than for the bottom-up
inventory  (Fig.  6).  The  difference  between  CAMS  (3.65  TgCO.Month-1)  and  the  CEDS-
KORUSv5 (5.7 TgCO.Month-1) is twice as high as the difference between DART/CAM-chem
posterior  (7.6  TgCO.Month-1)  and  TCR-2  (8.7  TgCO.Month-1).  On  average,  the  increase  in
emissions due to assimilation is about 33 % for central  China and nearly doubled (80 %) in
Northern China, from 2.7 TgCO.Month-1 to 4.9 TgCO.Month-1. TCR-2 suggests higher emissions
(5.7 TgCO.Month-1), while the CAMS estimate is lower (1.8 TgCO.Month-1). More work should
be dedicated to check whether the assumptions made on the prior estimates impact the retrieved
emissions. This includes improving the regional distribution and scaling up the baseline prior CO
emissions, but also how much the model uncertainties in the OH chemical sink impact the CO
inversions (e.g., Müller et al., 2018). A comparison of the amount of residential coal burning
emissions in bottom-up inventories could help in understanding the discrepancy and quantifying
potential offsets (Chen et al., 2017; Cheng M., et al., 2017; Zhi et al., 2017, Benish et al., 2020).

For South Korea, a relatively smaller difference between the posterior and the prior suggests an
improved  bottom-up  inventory.  However,  the  smaller  area  of  South  Korea  is  much  less
constrained  by  MOPITT,  and  the  overall  estimate  seems  to  be  determined  by  the  prior
distribution.  For  instance,  the  TCR-2  shows  larger  emissions  over  North  Korea  and  the
Pyongyang area while DART/CAM-chem and CAMS suggests larger emissions for the SMA.
Therefore, the CAMS total emissions that show a similar pattern (0.18 TgCO.Month-1) are in
good agreement with the DART/CAM-chem (0.16 TgCO.Month-1) while the TCR-2 has a total
of 0.07 TgCO.Month-1.  For Japan, where biomass burning and low-tech coal combustion are
rare, the total is nearly unchanged in contrast to the other regions, and emissions are increased
from 0.38 to 0.41 TgCO.Month-1 or 8 %.
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Figure 6: Anthropogenic CO emissions for May 2016 for Central China (91E, 29N to 124E, 38N), North
China (91E, 38N to 130E, 49N), South Korea (125E, 33.5N to 129E, 38N) and Japan (130E, 30N to 146E,
44N). 

7. Evaluation of the simulated vertical profiles against ARIAs and KORUS-AQ

This section presents the evaluation of the simulated profiles of CO, O3, OH, and HO2 with the
observations from ARIAs and KORUS-AQ.
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7.1 Mean profile during ARIAs and KORUS-AQ

Figure 7 shows the average CO vertical profiles for the ARIAs and the KORUS-AQ campaigns.
For the ARIAs field campaign, we bin the profiles into 50 hPa bins. Overall, CO observations
show a strong variability, with large enhancement over a background of around 170 ppbv found
at 775 hPa and above. Benish et al. (2020) show that the median of the observed CO values in
the  lowest  500  meters  is  around  400  ppbv.  Using  additional  enhancement  ratios,  the
measurements  indicate  low-efficiency  fossil  fuel  combustion,  that  could  originate  from
residential coal burning and gasoline vehicles as well as crop residue burning such as straw from
winter wheat. The MOPITT-DA and the TCR-2 overestimate the CO concentrations compared to
the measurements for this surface layer although this overestimate is smaller by 60 % for TCR-2
and by 30 % for MOPITT-DA when a value higher than 20 ppbv SO2 (the approximate 95th

percentile)  is  used  to  define  plumes  for  exclusion.  The  CAM-chem posterior  simulated  CO
concentrations,  that just  use the smoothed posterior emissions from the MOPITT-DA have a
mean value closer to the observations. While both simulations do not have exactly the same
transport, the remaining underestimation is likely to be due to the sequential data assimilation in
the MOPITT-DA runs that compensate for the remaining biases.  Interestingly,  the HTAP v2
inventory  that  was  for  the  year  2010  still  provides  good  CO  profiles  (CAM_HTAP).  The
CAM_Kv5,  a  nudged  CAM-chem  simulation,  and  the  Control-Run,  underestimate  CO
concentration,  with  slight  differences  due  to  transport.  The  modeled  profile  with  CAMS
emissions profiles is the lowest CO of all simulations. For altitudes ranging between 900 hPa and
600 hPa, the bias is lowest using the TCR-2 emissions or with the MOPITT-DA, because these
emissions  are  more  spatially  representative  of  regional  pollution  (Wang  et  al.,  2018).  This
confirms that the free-tropospheric background is too low in CAM_Kv5 and CAM-CAMS. The
MOPITT-DA naturally shows the lowest bias in CO concentrations in the free troposphere. The
875 hPa (900 to 850 hPa) layer mean (and median) observed ozone during ARIAs (Benish et al.,
2020) is around 80 to 90 ppbv and the mean peaks at 90 ppbv. For this layer, higher O3 was
found for simulations with higher CO. While it suggests that reducing CO biases can improve
O3, NO2 and NMVOCs such as aromatics seem to play an important role in the ozone formation
in the region (Benish et al., 2020). The mean O3 concentration is still underestimated by around
10 ppbv in the free troposphere.
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Figure 7: Average CO vertical profiles for the ARIAs campaign (top panel) and the KORUS-AQ (bottom
panel). Observations were filtered out when SO2 was higher than 20 ppbv for ARIAs and benzene higher than
1 ppbv for KORUS-AQ. The black line shows the observation mean and the shaded area is the observation
standard deviation. Only mean CO or O3, are shown for the model simulations. 
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Two  groups  appear  when  comparing  to  KORUS-AQ  observations.  The  Control-Run  and
CAM_Kv5, using CEDS-KORUS v5 with two different model dynamics and CAM_CAMS are
simulating a lower CO and show a severe low bias of more than 100 ppbv at the surface. The
second group includes the CAM-chem simulations using posterior  emission estimates.  Those
simulations are quite close together with an average for all altitude layers of CO of 141 ppbv and
145 ppbv with a bias of 31 % and 29 % respectively (Table 4). This is to be compared with their
priors that have an average CO of 116 ppbv and 125 ppbv, which implies an underestimation of
43 % and 39 %, respectively. Correcting only the bias in anthropogenic emissions is  not as
efficient  as  the  joint  optimization  of  anthropogenic  emissions  and sequential  optimization  of
initial  conditions  through data  assimilation  (MOPITT-DA).  It  suggests  that  other  sources  of
errors such as transport and chemistry play an important role in the CO bias. The MOPITT-DA
has an average CO of 179 ppbv, resulting in 12 % underestimation on average (Table 4), which
is  well  between  the  range  in  measurement  and representativeness  errors. Aside  from
CAM_CAMS, the modeled free tropospheric O3 shows no particular bias. The enhancement of
observed O3 closer to the surface is underestimated in all simulations. The optimized emissions
lead to an increase of a few ppb in O3, bringing those simulations closer to the observations. In
summary, using top-down estimates of CO emissions clearly improves the CO and O3 vertical
profiles against independent observations over China and Korea.

Table  4:  Comparison  of  CO (ppbv)  measured  aboard the  DC-8  and model  simulation  for  all  altitudes.
Statistical indicators are calculated for phase 1 (7 flight days, 2952 observations), phase 2 (4 flight days, 2029
observations), phase 3 (3 flight days, 1243 observations), phase 4 (5 flight days, 2448 observations) and the
whole campaign (20 flight days, 9099 observations).

  CO
(1)

Bias
(%)

CO
(2)

Bias
(%)

CO
(3)

Bias
(%)

CO
(4)

Bias
(%)

CO 
(All)

Bias
(%)

Observation 173.
1 198.3 246.8 211.2 203.6

Control-Run 114.
5 -33.8 108.6 -45.2 138.7 -43.8 115.3 -45.4 118.6 -41.8

MOPITT-DA 146.
5 -15.4 168.3 -15.1 230.6 -6.6 182.8 -13.5 178.5 -12.4

CAM_CAMS 108.
1 -37.6 110.4 -44.3 112.2 -54.5 119 -43.6 112.8 -44.6

CAM_Kv5 112.
3 -35.1 110.8 -44.1 124.7 -49.5 115.7 -45.2 115.9 -43.1

CAM_HTAP 118.
7 -31.4 115.3 -41.8 137.3 -44.4 128.5 -39.2 124.6 -38.8

CAM_MOP 136 -21.4 131.8 -33.5 157.1 -36.3 139.5 -33.9 140.9 -30.8

CAM_TCR-2 138.
4 -20 128.9 -35 174.4 -29.3 146.1 -30.8 145 -28.8

CAM_MOP-Bio 138.
4 -20.1 137.2 -30.8 163 -34 151.8 -28.1 147.2 -27.7
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7.2 Weather induced dynamical change in CO during KORUS-AQ

Figure 8 shows the CO anomalies during KORUS-AQ for the observations and the simulations.
The CO anomalies are largest in phase 3, with an enhancement of almost 100 ppb at 850 hPa.
This transport phase, defined and described in Peterson et al. (2019) was characterized by high
levels of ozone (>60 ppbv) and PM25 (>50 μg/m3) because of efficient transport of low-level
pollution (Huang et al., 2018; Miyazaki et al., 2019; Choi et al., 2019). The model reasonably
reproduced the variability of the different phases, albeit with insufficient magnitude. The desired
magnitude  is  only  achieved  when  including  data  assimilation.  Updating  the  anthropogenic
emissions from the bottom-up to the top-down inventories improved the representation of the CO
anomalies. This suggests that weather patterns and the direct anthropogenic emissions explain
some  of  the  CO  variability  during  the  campaign.  However,  since  only  the  MOPITT-DA
simulation  is  reproducing  well  the  anomalies,  it  suggests  that  chemistry  and  transport  are
important too. Large-scale subsidence and reduced wind speeds during the anticyclone of phase
2 were marked by the lowest CO anomalies and are also better reproduced with the updated
emissions. Over South Korea, running CAM-chem with the CAMS emissions shows the largest
anthropogenic CO from South Korean sources at the surface for the 4 phases and is likely to
produce more realistic simulation since CO is constantly underestimated. This cannot be seen for
the total CO since most of the CO is not from South Korean direct anthropogenic sources. The
profile  tags  of  the  contributions  from Central  China  and Northern  China  are  approximately
doubled  with  the  optimized  emissions,  consistent  with  Tang et  al.  (2019).  As shown in  the
previous  section,  the  CAM_TCR-2  and  the  DART/CAM-chem  posteriors  have  the  largest
emissions from China and therefore the largest contribution of the CO tags from both Northern
and Central China.
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Figure 8: Average CO anomalies for the four different phases of KORUS-AQ (first column). The anomaly is
defined by subtracting the respective average vertical profile (see Fig. 2). Absolute vertical profiles of the CO
tags  are  shown from South  Korea (Second column),  Central  China (third column) and Northern China
(fourth column). Each row corresponds to a different phase.

We will now focus on two case studies, Phase 2 and Phase 3, for which the highest ozone was 
observed at the surface in South Korea during KORUS-AQ (Peterson et al., 2019).

7.3 Phase 2 case study: the anticyclonic phase 

A large-scale anticyclone occurred from 17 May 2016 to 22 May 2016 with increased surface
temperatures, reduced wind speed and drier conditions, all of which enhance ozone production
(Peterson et al., 2019). The conditions were also favorable to an increase in biogenic emissions.
As shown in the previous sections, this episode was characterized by negative CO anomalies that
were best captured by the MOPITT-DA simulations. This anomaly is reflected through lower
OH and higher O3 between 800 hPa and 400 hPa (Figure 9). This indicates  rather clean air
masses, probably with larger stratospheric contribution.  This episode is driven by the overall
weather  pattern  with a  clear  enhancement  of  HOx and  O3 towards  the surface.  In  this  case,
changes in the anthropogenic CO only play a minor role, still the O3 is modeled better with a
reduction of the bias by 1 ppbv between the posterior and the prior (Table 5). The increase in
biogenic emissions leads to an improvement in O3 by further reducing the bias at the surface

26

795

800

805

810



(Figure 9). Over the whole profile, the bias is reduced by 3 ppbv (4 ppbv against the prior) for
the CAM_MOP-Bio, compared to the CAM_MOP, with a reduction in RMSE as well (Table 5).

Figure 9: Average LaRC box model OH and HO2 and measured O3 for phase 2 (left column) and phase 3 
(right column) of KORUS-AQ.
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7.4 Phase 3 case study: low-level transport and haze development.

Phase 3 was characterized by the largest observed CO and O3 positive anomalies. In this case,
there is a clear relationship between the CO bias,  and the O3,  OH and HO2 vertical  profiles
(Figure 9). The OH is overestimated because of a lack of CO, other VOCs and errors in the
vertical profile of NOx. Increasing CO in the CAM_MOP reduces OH and increases HO2 and O3.
The overall bias (Table 5) in ozone is reduced from 11.3 ppbv to 9.9 ppbv with the change in
CO,  and  lowered  further  to  7.3  ppbv  with  the  additional  increase  in  biogenic  emissions
(CAM_MOP-Bio). The relative impacts of biogenics are clear in the surface layer for OH, HO2

and O3. Overall, HO2 and O3 are underestimated as a result of CO underestimation. The MOPITT
assimilation  provides the best  results  for OH throughout  the profile and lower RMSE and a
similar  bias  as  the  CAM_MOP-Bio  (Table  5).  As  suggested  by  the  Chinese  origin  of  the
pollution for higher levels, it is likely that additional anthropogenic NMVOCs are also missing
and contribute to the ozone formation that is still underestimated.

Table 5: Comparison of O3 measured aboard the DC-8 and model simulation for all altitudes.  Statistical
indicators  are  calculated  for  phase  2  (4  flight  days,  1910  observations),  phase  3  (3  flight  days  1111
observations) and all KORUS-AQ.

O3

(Phase 2) Bias RMSE O3

(Phase 3) Bias RMSE O3 (All) Bias RMSE

Observation 87.7 91.5 82.1
Control-Run 77.2 -10.6 19.6 81.8 -9.7 20.4 75.1 -7 16.8
MOPITT-DA 79.7 -8 18.1 83.8 -7.7 19.5 76.9 -5.2 15.9
CAM_CAMS 74.4 -13.3 20.7 76.1 -15.4 24.2 73.6 -8.5 18.8

CAM_Kv5 78.2 -9.6 18.5 80.2 -11.3 21.5 76.5 -5.6 17.4
CAM_HTAP 78.5 -9.2 18.4 80.7 -10.8 21.2 76.9 -5.2 17.3
CAM_MOP 79.1 -8.6 18.2 81.6 -9.9 20.8 77.6 -4.5 17.2

CAM_TCR-2 79.2 -8.6 18.1 82.2 -9.2 20.5 77.8 -4.4 17.1
CAM_MOP-Bio 82.3 -5.5 15.9 84.2 -7.3 20.2 80.5 -1.6 16.5

8 Conclusions

Anthropogenic CO emissions are an important contributor to poor summer air quality in Asia
and  to  forward  modelling  uncertainties.  Here  we  evaluate  top-down  estimates  of  the  CO
emissions in East Asia with aircraft observations from two extensive field campaigns. There are
multiple lines of evidence that the bottom-up anthropogenic emissions are too low in winter and
spring, leading to a large underestimation of CO during the KORUS-AQ campaign in May and
June 2016. We also highlight in this work that chemical production and loss via OH reaction
from emissions of anthropogenic and biogenic VOCs confound the attribution of this bias in
current model simulations. Combined initial conditions and emission optimization remains the
best method to overcome these modeling issues. The major findings of this investigation are:

1. The  comparison  of  OH  modeling  and  observations  confirms  that  assimilating  CO
improves the OH chemistry by correcting the OH/HO2 partitioning. The interactive and
moderately  comprehensive  chemistry  with  resolved  weather  from reanalysis  datasets
represents well the variations in OH. These results provide an additional line of evidence
that  assimilating  CO improves  the  representation  of  OH in  global  chemical-transport
models. This has implications for studying the CH4-CO-OH coupled reactions and the
impact of chemistry and interactive chemistry for allowing feedbacks. It suggests that
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even if global mean OH is buffered on the global scale, local changes in OH can be
important,  and  can  be  quantified  by  taking  advantage  of  field  campaigns.  This  will
provide ways to improve and provide additional constrain on CH4 inversions by either
improving  the  sink  or  by  better  characterizing  anthropogenic  sources  through  CO
assimilations. A  better  quantification  of  the  spatio-temporal  variability  of  these
compounds  will  improve  the  physical  representation  of  Earth  system  processes  and
feedbacks  and  will  be  beneficial  for  both  air  quality  and  climate  change  mitigation
scenarios.

2. The  setup  of  the  CO  assimilation  that  corrects  the  initial  conditions  and  emissions
provides the best results for CO. While the emission update improves the forecast closer
to the source, the assimilation allows for better reproduction of the vertical profiles and
the background and eventually compensates for model errors. 

3. The spread of emission estimates from state-of-the-art inventories,  3 bottom-up and 2
top-down is significant. For example, the emissions of Central China show a range from
3.65 TgCO.month-1 to 8.87 TgCO.month-1. Inventories with the highest emissions fluxes
show improved vertical profiles of CO.

4. Running the forward model with updated emissions of anthropogenic CO increases the
O3 formation, reduces OH and increases HO2. This improves the comparison with O3, OH
and  HO2 observations.  The  comparison  with  observations  suggests  that  the  overall
modeled photochemistry was improved with updated CO emissions. In this case, there is
also  a  better  representation  of  severe  pollution  episodes  with  large  O3 values.  Often
overlooked, it clearly shows that running chemistry transport models with biased CO and
VOCs emissions results in poorly modeled ozone and impacts most of the chemical state
of  the  atmosphere.  The  sensitivities  may  vary  for  different  chemical  and  physical
atmospheric environments.  In this case, underestimating CO in VOC-limited chemical
regimes explains the underestimation of ozone in the boundary layer and the lower free
troposphere.

5. Biogenic  emissions  appear  to  play  an  important  role  in  ozone  formation  over  South
Korea, in particular when conditions are favorable (sunny and warm). The role is weaker
over  China,  at  least  in  May  before  maximum  biogenic  emission  rates.  A  combined
assimilation of CO and CH2O observations is likely to greatly improve ozone forecasting
through estimates of boundary and initial condition estimates of VOCs.

On  top  of  CO  data  assimilation,  improved  emissions  through  state  augmentation  can  help
improve the next-generation of Korean (e.g., Lee et al. 2020) or global (Barré et al., 2019) air
quality  analysis  and  forecasting  systems.  Further  improvements  can  be  achieved  by
simultaneously  assimilating  CH2O  retrievals  (e.g.  Souri  et  al.,  2020)  and  CO  retrievals.
Improving the aerosol distribution can help correct the HO2 uptake and therefore OH, CO and O3

by assimilating satellite aerosol optical depth measurements, in particular for this region with
high aerosol loadings (e.g. Ha et al.,  2020). Using CrIS-TROPOMI joint retrievals (Fu et al.
2016), the improved vertical sensitivity may potentially be used to further constrain secondary
CO formed through biogenic oxidation.  In this  case,  secondary CO is correlated with ozone
formation.  This  is  also  true  for  other  geographical  areas,  such as  over  the  United  States  in
summer (Cheng et al., 2017, 2018). On average, there is a lower combustion efficiency in China
than  in  Korea,  with  the  ratio  of  CO  to  CO2 changing  accordingly  as  shown  by  the  DC-8
measurements during KORUS-AQ (Halliday et al., 2019) and indicated by model simulations
(Tang et  al.,  2018).  Tracking CO2 and CO from fossil  fuel emissions could be combined to
further constrain fossil fuel emission fluxes.
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Many studies have focused on the long-term CO emission trends now well characterized (Zheng
et al., 2019). For the sake of forward modeling (see e.g. Huang et al., 2018), it is important to
focus on improving the absolute emission totals and their spatio-temporal distribution.  While
bottom-up inventories are critical, the next step is a comparison of inverse modelling estimates in
combination with aircraft observations (e.g. Gaubert et al., 2019) to assess transport, chemistry
and deposition error. Multi-model estimates of the emissions will provide improved error bars on
the  CO  budget,  and  hopefully  reduced  uncertainties  from  chemistry  and  meteorology  (e.g.
Müller et al., 2018; Miyazaki et al., 2020a).

Appendix A: KORUS-AQ DC-8 instrumentation

CO and CH4 were both measured using the fast-response (1 Hz), high-precision (0.1 % for CH4,
1 % for CO) and high accuracy (2 %) NASA Langley Differential Absorption CO Measurement
or DACOM (Sachse et al. 1987). Based on the differential absorption technique, CO and CH4

were measured using an infrared tunable diode laser. The instrument has been used in many field
campaigns and has been useful to evaluate profiles retrieved from satellite remote sensing of CO
(Warner  et  al.,  2010;  Tang  et  al.,  2020).  Formaldehyde  was  measured  using  the  Compact
Atmospheric Multispecies Spectrometer (CAMS), also at 1 Hz (Richter et al., 2015). NO, NO2

and O3 were measured by the NCAR chemiluminescence instrument (Ridley and Grahek 1990;
Weinheimer  et  al.,  1993).  Nitric  acid  (HNO3),  hydrogen  peroxide  (H2O2)  and  methyl
hydroperoxide (CH3OOH) were measured using the California Institute of Technology Chemical
Ionization  Mass  Spectrometer  (CIT-CIMS)  (Crounse  et  al.,  2006).  Among  the  82  speciated
VOCs sampled  by the  discrete  Whole  Air  Sampling  (WAS) followed  by  multi-column  gas
chromatography (Simpson et al., 2020), we used ethyne (C2H2), ethane (C2H6), ethene (C2H4) and
propane (C3H8).  All the larger alkanes (i-butane, n-butane, i-pentane, n-pentane,  n-hexane, n-
heptane,  n-octane,  n-nonane,  n-decane),  alkenes  (1-butene,  i-butene,  trans-3-butene  and  1-3-
butadiene) and xylenes (mp-xylene, o-xylene) were summed (Table 3) for the comparison with
the BIGALK, BIGENE and XYLENES respectively of the T1 surrogate species (Emmons et al.,
2020). Methanol (CH3OH), acetaldehyde (CH3CHO), acetone (CH3COCH3), benzene (C6H6) and
toluene (C7H8) were measured with the proton-transfer-reaction time-of-flight mass spectrometer
(PTR-ToF-MS) at 10 Hz frequency (Müller et al., 2014). We also evaluate some meteorological
parameters, such as temperature and wind speed as well as water vapor moist volumetric mixing
ratio measured by NASA open-path diode laser hygrometer (Podolske et al., 2003), with a 5%
uncertainty.  J  values  were  measured  using  the  CAFS  instrument  (Charged-coupled  device
Actinic Flux Spectroradiometer; Shetter and Müller, 1999; Petropavlovskikh et al., 2007).

Appendix B: CAM-chem updates

B1 CH4 emissions from the Global Carbon Project CH4

Radiatively active species, such as CH4, are prescribed in CAM-chem using a latitudinal-monthly
surface field derived from observations in the past and projections for the future, defined in the
CMIP6 protocol (Meinshausen et al., 2017). In order to include the feedbacks in the CH4-CO-OH
chemical mechanism, we choose to apply CH4 emissions instead of the prescribed field. The
scope of the paper is not to study the methane budget; the objectives are to see how much CO is
produced from CH4 during the campaign. The long-term goal is to get sensitivities to changes
according  to  CO emission  updates  in  order  to  analyze  the  feedbacks  on  CH4 when  CO  is
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changed. We used emissions from some of the inversions of a recent compilation of CH4 budget
from top-down estimates (Saunois et al.,  2020). As a first step, we used the mean of the 11
inversions (Table B1) that assimilate CH4 retrievals from the JAXA satellite Greenhouse Gases
Observing SATellite (GOSAT, Kuze et al., 2009).
 
Table B1: List  of  the  11 methane inversions from the Global  Methane Budget  (Saunois  et  al.,  2020),  as
indicated by the number of inversions column. All the details are presented in the references.
Institution / Model Observation Used Number

of
inversions

References

FMI / CarbonTracker 
Europe-CH4

GOSAT NIES L2 v2.72 1 Tsuruta et al. (2017)

LSCE & CEA / 
LMDz-PYVAR

GOSAT Leicester V7.2 2 Yin et al. (2015)

LSCE & CEA / 
LMDz-PYVAR

GOSAT Leicester V7.2 4 Yin et al., (2019)

NIES / NIES-
TMFLEXPART 
(NTFVAR)

GOSAT NIES L2 v2.72 1 Maksyutov et al. (2020); Wang et 
al. (2019)

TNO & VU / 
TM5-CAMS

GOSAT ESA/CCI 
v2.3.88 (combined with
surface observations)

1 Segers (2020 report); Bergamaschi
et al. (2010; 2013); Pandey et al., 
(2016)

EC-JRC / TM5-4Dvar GOSAT OCPR v7.2 
(combined with surface 
observations)

2 Bergamaschi et al., 
(2013, 2018)

B2 The HO2 uptake by aerosol particles

The TS1 chemistry includes an HO2 uptake by aerosol particles following the recommendation
of Jaeglé et al. (2000) and Jacob et al. (2000), that form H2O2, with a reactive uptake coefficient
γ of 0.2, as follow:

H O2+aerosols→ 0.5∗H 2O2 with γ=0.2             (B1)

Based on Observations from the NASA Arctic Research of the Composition of the Troposphere
from Aircraft  and Satellites  (ARCTAS) and other  field  campaigns,  Mao et  al.  (2010,  2013)
suggested a catalytic mechanism with transition metal ions (Cu and Fe) that rapidly converts HO2

to H2O instead of H2O2:

H O2+aerosols→ H2O with γ=0.2  (B2)

Using Eq. B2 and 𝛾=1 leads to a large loss of HOx, which in turn increases the CH4 and CO
lifetime  and  thus  reduces  the  CO  bias  during  the  high  latitude  winter  (Mao  et  al.,  2013).
Christian et al. (2017) simulated a range of possible values of 𝛾 and evaluated the results against
ARCTAS data and found that lower 𝛾, closer to zero, gave a more realistic distribution of HOx.
Kanaya et al. (2009) studied ozone formation over Mount Tai, located in central East China, and

31

950

955

960

965

970

975



looked at the possible influence of the heterogeneous loss of gaseous HO2 radicals. They found
that introducing the loss reduces HO2 levels and increases ozone, with a more pronounced effect
in the upper part of the boundary layer where the role of OH+NO2 +M reaction does not play a
significant role in the radical termination reaction while the number density of aerosol particles is
still important. Li et al. (2018) found that the HO2 uptake was the largest HOx sink in the upper
boundary layer in northern China. They suggested that the reduction in HO2 uptake caused by the
decrease  of  aerosols  was  responsible  for  the  increase  of  O3 in  the  region.  Thus,  the  initial
comparison of CAM-chem using Eq. (B1) showed a large overestimation of H2O2. In a previous
study  using  Eq.  (B1),  the  increase  in  CO  following  data  assimilation  increased  hydrogen
peroxide  (H2O2)  levels  (Gaubert  et  al.,  2016).  Therefore,  it  is  expected  that  the  hydrogen
peroxide (H2O2) would be severely overestimated if Eq. (B1) is used. Miyazaki et al. (2019a)
assimilated several satellite retrievals of chemical composition during KORUS-AQ, including
MOPITT, and found a strong overestimation of H2O2 using Eq. (B1) in the chemical scheme of
the MIROC-Chem model. Thus, the reaction in CAM-chem has been updated to Eq. (B2) with γ
=0.1 prior to any data assimilation run. 

B3 Results on HO2 uptake and methane emissions

This section presents the results on the model update before the assimilation runs are conducted.
Five CAM-Chem simulations were performed (Table B2), and CAM-Chem-Ref corresponds to
the reference with prescribed CH4 and Eq. (B2) for the HO2 uptake. The CAM-H2O is performed
with  the  update  to  Eq.  3  for  the  HO2 uptake  and the  GCP-Ref  is  performed with  the  CH4

emissions  instead  of  the  CH4 prescribed  field.  The  GCP-H2O  contains  the  update  on  CH4

emissions and on the HO2 uptake and has been run with γ=0.2 and γ=0.1.

Table B2: description of the sensitivity test performed with CAM-Chem anterior to any assimilation run.

Simulation name HO2 uptake (𝛾) Surface CH4

CAM-chem-Ref Eq. (2) (𝛾=0.2) Prescribed
CAM-Chem-H2O Eq. (3) (𝛾=0.2) Prescribed
GCP-Ref Eq. (2) (𝛾=0.2) Emissions
GCP-H2O (𝛾=0.2) Eq. (3) (𝛾=0.2) Emissions
GCP-H2O (𝛾=0.1) Eq. (3) (𝛾=0.1) Emissions

Fig. B1 shows the average profiles for H2O2 and CH4.  There is a large bias in H2O2 for the
reference  simulation  (CAM-chem-Ref)  that  is  particularly  large  in  the  surface  layer.  The
observed H2O2 at the surface is lower in the morning due to inhibited photochemical production
and the nighttime deposition (Schroeder et al., 2020).  Large model errors could then be due to
uncertainties  in  the  boundary  layer  height  and  wet  deposition.  However,  this  points  to  an
underestimation of the H2O2 dry deposition, a common feature found due to an overestimation of
surface resistance (Ganzeveld et al., 2006; Nguyen et al., 2015). The H2O2 daytime deposition
velocities calculated at the location of the Taehwa Research Forest site ranged between 0.4 cm.s -

1 and  1.3  cm.s-1,  which  suggests  an  underestimation  compared  to  the  observed  velocities  of
around 5 cm.s-1 reported in the literature (Hall and Claiborn, 1997; Hall et al., 1999; Valverde-
Canossa et  al.  2006;  Nguyen et  al.,  2015).  A simulation  with a  5-fold increase of the H2O2

deposition velocity over land only partially reduces the H2O2 bias. Further work needs to be done
to better understand the drivers of the H2O2 biases, which is beyond the scope of this study.
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Interestingly, having CH4 emissions (GCP-Ref) while keeping the original reaction (Eq. 2) gives
a  slightly  better  H2O2,  suggesting  that  using  optimized  emissions  instead  of  a  prescribed
concentration field has an effect on the oxidants’ distribution. The three simulations with the
updated chemistry out-perform the references with biases almost halved. This is particularly true
for the free troposphere. The modeled H2O2 profile seems rather insensitive to the choice of the 𝛾value. Since the simulations with the  𝛾=0.1 performs slightly better, all following simulations
will be done with the updated reaction and 𝛾=0.1. This is consistent with a recently published
studies that diagnosed a median 𝛾 value of 0.1 over the NCP region (Song et al., 2020). 

Using emissions  instead  of  fixed  boundary conditions  improves  the  simulated  CH4 near  the
surface,  but  with  a  lower  tropospheric  background  (Figure  A1).  The  comparison  with  CH4

observations indicates a general underestimation. At this point, it is difficult to determine why it
is underestimated. 

A first reason could be a too strong CH4 sink in the model compared to the sink considered in the
inversions  that  derived the  GCP emissions.  However,  the  prescribed CH4 is  not  resolved in
longitude, while the difference for a given latitude can be up to 300ppb when using emissions
(see Fig S1). Emissions also have uncertainties and could be underestimated, or may have just
been estimated with lower OH than the one CAM-chem simulates for this period. Saunois et al.
(2020) showed that the GOSAT based inversions have lower emissions than the surface-based
inversions for the northern mid-latitudes. It is likely that the errors observed during KORUS-AQ
are a combination of both of those factors, as well as potential transport errors. Since the CH4

profile is overall better reproduced with the GCP emissions, we have used the ensemble mean of
the 11 GCP optimized emissions for the simulations presented in the main paper.

Figure  B1:  Average  H2O2 profiles  (left  panel)  and  CH4 profiles  (right  panels)  for  all
KORUS-AQ. The mean (black line)  and standard deviation (shaded grey)  of  the DC-8
observations are calculated for each 100 hPa bins and only the mean is shown for model
simulations.
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