000888370 001__ 888370
000888370 005__ 20220930130259.0
000888370 0247_ $$2doi$$a10.1002/adma.202004132
000888370 0247_ $$2ISSN$$a0935-9648
000888370 0247_ $$2ISSN$$a1521-4095
000888370 0247_ $$2Handle$$a2128/27151
000888370 0247_ $$2altmetric$$aaltmetric:95552915
000888370 0247_ $$2pmid$$a33263190
000888370 0247_ $$2WOS$$aWOS:000594757100001
000888370 037__ $$aFZJ-2020-04874
000888370 082__ $$a660
000888370 1001_ $$0P:(DE-Juel1)172846$$aRose, Marc-André$$b0$$eCorresponding author
000888370 245__ $$aIdentifying Ionic and Electronic Charge Transfer at Oxide Heterointerfaces
000888370 260__ $$aWeinheim$$bWiley-VCH$$c2021
000888370 3367_ $$2DRIVER$$aarticle
000888370 3367_ $$2DataCite$$aOutput Types/Journal article
000888370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615897352_18092
000888370 3367_ $$2BibTeX$$aARTICLE
000888370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888370 3367_ $$00$$2EndNote$$aJournal Article
000888370 520__ $$aThe ability to tailor oxide heterointerfaces has led to novel properties in low‐dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge‐transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge‐transfer heterointerface, LaAlO3/SrTiO3. Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.
000888370 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000888370 588__ $$aDataset connected to CrossRef
000888370 7001_ $$0P:(DE-HGF)0$$aŠmíd, Břetislav$$b1
000888370 7001_ $$0P:(DE-HGF)0$$aVorokhta, Mykhailo$$b2
000888370 7001_ $$0P:(DE-Juel1)177864$$aSlipukhina, Ivetta$$b3
000888370 7001_ $$0P:(DE-Juel1)161427$$aAndrä, Michael$$b4
000888370 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b5
000888370 7001_ $$0P:(DE-Juel1)165376$$aDuchoň, Tomáš$$b6
000888370 7001_ $$0P:(DE-HGF)0$$aLežaić, Marijana$$b7
000888370 7001_ $$0P:(DE-HGF)0$$aChambers, Scott A.$$b8
000888370 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b9
000888370 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b10$$ufzj
000888370 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b11
000888370 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.202004132$$gp. 2004132 -$$n4$$p2004132$$tAdvanced materials$$v33$$x1521-4095$$y2021
000888370 8564_ $$uhttps://juser.fz-juelich.de/record/888370/files/01_Rose_et_al_LAOSTO_NAPXPS_preprint.pdf$$yOpenAccess
000888370 8564_ $$uhttps://juser.fz-juelich.de/record/888370/files/adma.202004132.pdf$$yOpenAccess
000888370 8767_ $$d2020-12-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000888370 8767_ $$92021-01-27$$d2021-01-29$$eCover$$jZahlung erfolgt$$zBelegnr. 1200163485
000888370 909CO $$ooai:juser.fz-juelich.de:888370$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172846$$aForschungszentrum Jülich$$b0$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177864$$aForschungszentrum Jülich$$b3$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b5$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165376$$aForschungszentrum Jülich$$b6$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b9$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b10$$kFZJ
000888370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b11$$kFZJ
000888370 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888370 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888370 9141_ $$y2021
000888370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-10-13
000888370 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888370 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-13$$wger
000888370 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2018$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2018$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888370 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger
000888370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888370 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000888370 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000888370 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x2
000888370 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x3
000888370 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x4
000888370 980__ $$ajournal
000888370 980__ $$aVDB
000888370 980__ $$aI:(DE-Juel1)PGI-7-20110106
000888370 980__ $$aI:(DE-82)080009_20140620
000888370 980__ $$aI:(DE-Juel1)PGI-1-20110106
000888370 980__ $$aI:(DE-Juel1)PGI-6-20110106
000888370 980__ $$aI:(DE-Juel1)PGI-11-20170113
000888370 980__ $$aAPC
000888370 980__ $$aUNRESTRICTED
000888370 9801_ $$aAPC
000888370 9801_ $$aFullTexts