001     888398
005     20220305151506.0
024 7 _ |a 10.1016/j.firesaf.2020.103168
|2 doi
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 2128/27575
|2 Handle
024 7 _ |a altmetric:95760435
|2 altmetric
024 7 _ |a WOS:000639876600007
|2 WOS
037 _ _ |a FZJ-2020-04877
082 _ _ |a 690
100 1 _ |a Würzburger, My Linh
|0 P:(DE-Juel1)159526
|b 0
|e Corresponding author
111 2 _ |a Symposium of the International Association for Fire Safety Science
|g IAFSS 2020
|c Waterloo
|d 2020-04-27 - 2020-05-01
|w Canda
245 _ _ |a Dynamic domain expansion in smoke spread simulations with ARTSS: Speedup and overhead
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646401132_22590
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper describes the impact and consequences of a dynamic domain expansion in a smoke simulation performed in the software ARTSS. This software is developed with the aim to conduct real-time or even prognosis computations by using GPUs as the main computational architecture. Further runtime acceleration is proposed by means of a dynamic expansion of the computational domain. This approach is based on the reduction of the computational domain, which is dynamically adapted to calculate only the domain of interest, e.g. regions containing smoke. Here, the domain starts as a localised region and is expanded based on prescribed criteria. This contribution outlines the initial implementation. However, to understand the impact of an expansion, the overhead caused by the expansion process, the influence on the numerical result and on the runtime, as well as the used expansion parameters, are investigated. In general, an increased acceleration can be eventually observed at the costs of accuracy due to the reduced domain. The overhead and accuracy can be controlled by the method's parameters. The loss of accuracy depends strongly on which expansion methods and setting are used. With more complex expansion methods, the loss of accuracy can be reduced.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 1
770 _ _ |a Fire Safety Science: Proceedings of the 13th International Symposium
773 _ _ |a 10.1016/j.firesaf.2020.103168
|g p. 103168 -
|0 PERI:(DE-600)1483569-1
|p 103168
|t Fire safety journal
|v 120
|y 2021
|x 0379-7112
856 4 _ |u https://juser.fz-juelich.de/record/888398/files/Postprint.pdf
|y Published on 2020-07-14. Available in OpenAccess from 2022-07-14.
909 C O |o oai:juser.fz-juelich.de:888398
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159526
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2018
|d 2020-08-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21