
Dynamic Domain Expansion in Smoke Spread Simulations with ARTSS:1

Speedup and Overhead2

My Linh Würzburgera∗, Lukas Arnolda,b
3

aInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany4

bComputational Civil Engineering, University of Wuppertal, Germany5

∗Corresponding author (m.wuerzburger@fz-juelich.de)6

Highlights:7

• Real-time smoke spread simulation8

• Dynamic domain expansion in CFD simulations9

• Analysis of domain expansion overhead10

• Speedup of computation on GPUs and multicore11

Abstract:12

This paper describes the impact and consequences of a dynamic domain expansion in a13

smoke simulation performed in the software ARTSS. This software is developed with the14

aim to conduct real-time or even prognosis computations by using GPUs as the main15

computational architecture. Further runtime acceleration is proposed by means of a16

dynamic extension of the computational domain. This approach is based on the reduction17

of the computational domain, which is dynamically adopted to calculate only the domain18

of interest, e.g. regions containing smoke. Here, the domain starts as a localised region and19

is extended based on prescribed criteria. This contribution outlines the initial20

implementation. However, to understand the impact of an expansion, the overhead caused21

by the expansion process, the influence on the numerical result and on the runtime, as well22

as the used expansion parameters, are investigated. In general, an increased acceleration23

can be eventually observed at the costs of accuracy due to the reduced domain. The24

overhead and accuracy can be controlled by the method’s parameters. The loss of accuracy25

depends strongly on which expansion methods and setting are used. With more complex26

expansion methods, the loss of accuracy can be reduced.27

Keywords: smoke; modeling; CFD; fluid dynamics; dynamic computational domain; GPU28

computation29

1. Introduction30

The numerical computation of smoke spread in compartment fires has become a common31

approach in fire safety engineering. With new computer technologies the computational32

power allows new application fields for the simulation models. Eventually, real-time33

1



applications in evacuation modelling are already achievable [1] and envisioned in fluid34

dynamics in the context of buildings [2]. The aim of the software ARTSS35

(accelerator-based real time smoke simulator), former name JuROr [3], is to contribute to36

this new field with a new approach for a fast computational fluid dynamics (CFD) code to37

be used for fire, especially smoke, dynamics.38

As stated above, the purpose of ARTSS is to create a real-time and eventually even39

prognosis simulation of smoke propagation in complex buildings. The approaches to40

achieve this goal are to adopt the modelling and numerical algorithms as well as the41

implementation to use highly parallel systems, like graphics processing units (GPU).42

Presently, none of the common simulation tools has the flexibility and performance43

portability to run efficiently on GPUs. In the course of the development, simplifications44

w.r.t. the numerical and physical modelling are conducted in order to provide an efficient45

execution. Nevertheless, there are application cases which do not demand a high level of46

accuracy. One application is a quick scan of parameter spaces during the design of fire47

protection measures or the assessment of life safety. The resulting scenarios of interest can48

thereafter be evaluated with enhanded models, like the commercial software ANSYS CFX49

and open source software like FDS (Fire Dynamic Simulator) [4] amongst others. Another50

one, assuming a real-time capability, is to provide a simulation core in support decision51

systems, which can be used by firefighters to adopt their strategies in complex building52

structures or to steer technical systems such as smoke extraction systems or adaptive escape53

routes. These goals require a coupling to sensor data and a data assimilation methodology,54

which may be based on existing approaches [5]. So far, these approaches have only be55

applied to zone models, due to their short execution times. Finally, the inclusion in serious56

games to create a dynamic smoke behaviour in virtual fire fighting training systems [6].57

In order to accelerate the execution of ARTSS even further, the approach of a dynamic58

domain adaptation is developed. In this paper only the expansion is considered for a case59

where the smoke can spread undisturbed. The general idea of dynamic domain expansion60

is based on a flexible computational domain. Adoption of its size will directly impact the61

execution time, as only the selected regions will be considered by the solver. During the62

computation the adoption can be conducted dynamically to react on the current simulation63

state. The initial domain would include only the initial locations around the heat and64

smoke source and be extended as the smoke spreads. This way only regions which are65

affected by the smoke, e.g. given by the smoke concentration, are computed. In general, the66

extension strategy can be room or volume oriented. The first one would dynamically add67

adjacent rooms, while the latter one extends the computed domain in a room. Both68

strategies introduce new boundary conditions, here open boundary conditions, at the69

virtual boundaries of the dynamic domain. This is the main reason for a loss of modelling70

accuracy.71

The following section 2 gives an overview of ARTSS and the implementation of the72

proposed dynamical domain extension. This is followed by an example application73

(section 3) of the smoke spread in a tunnel geometry. Based on this example case, the74

2



impact of the extension model’s parameters on the runtime is analysed in section 4.75

Finally, the results are concluded in section 5.76

2. Concept and implementation in ARTSS77

2.1 Overview of ARTSS78

ARTSS calculates numerically the smoke and heat propagation in a given building79

structure. In favour of acceleration, models for thermal radiation, pyrolysis, combustion80

etc. are neglected. The open-source software uses a set of solvers for the Navier-Stokes81

equations including a solver for advection, diffusion and pressure. Due to its modular82

software design, all solvers can be replaced by other implementations. The code is written83

in C++ and uses OpenACC to be executed on a GPU or a multicore CPU (central84

processing unit). OpenACC is a pragma-based parallelisation approach which allows to85

create parallelisable tasks that are distributed amongst the computing units of the target86

architecture. In order to use various architectures the code does not have to be adopted87

but the same source code can be used. Especially the usage of GPUs requires code88

adoptions in other programming techniques. The efficiency and portability of ARTSS was89

shown in [7], while [3] demonstrates validation cases and the codes scalability.90

ARTSS solves the mass and heat transport equations with the following assumptions [3]:91

1. Low velocity: The flow velocity is assumed to be low, i.e. Ma := u/c < 1/3, whereby92

the Mach number relates the local flow velocity u with the speed of sound in the93

medium c.94

2. Incompressible flow: Fluid mass density ρ(x, t) = ρ0 is assumed to be constant.95

3. Small changes of density: For the buoyancy force it is assumed that the changes of96

density, ∆ρ = ρ− ρ0, as a function of temperature, are small.97

4. Constant properties: The specific heat capacity cp, thermal conductivity k, and the98

viscosity µ are constant with respect to temperature.99

5. Isobaric condition: The pressure in the thermodynamic process is assumed to be100

constant (∆p = 0).101

6. Zero viscous dissipation: The contribution of viscous dissipation is ignored in the102

energy equation, i.e. Φ = 0.103

These simplifications lead to the following system of equations:104

3



∇ · u = 0 (1)

∂tu + (u · ∇) u− ν∇2u +
1

ρ0
∇p =

1

ρ0
fB(T ) (2)

∂tT + (u · ∇)T − α∇2T = ST (3)

where ν = µ
ρ0

describes the kinematic viscosity, α = k
ρ0cp

the thermal diffusivity, and ST105

denotes a volumetric energy source.106

ARTSS uses the finite difference method (FDM) on a structured grid to approximate107

derivatives. In order to represent obstacles and boundaries, ARTSS uses index lists, e.g. a108

list that contains only the indices of inner grid cells to be considered by the solver. All109

variables, here velocity, temperature, and pressure, are stored as cell centered values110

(collocated grid cf. Fig. 1). With collocated grids, it is necessary to introduce a layer of so111

called ghost cells on the domain’s boundary to apply the boundary conditions of choice.112

This allows discretisation operators, or stencils, to be used at cells adjacent to the113

boundary as they are used in the interior of the domain. In order to quickly access the114

boundary cells their indices are again stored in a list. Therefore, the relocation of115

boundaries is done by adopting the according index lists. The adoption of this data116

structure is employed in the domain extension method.117

u

v

p

y

x

Fig. 1. 2D collocated grid with ghost cells (marked in gray with line pattern). Velocities
(u,v), temperature T and pressure p are stored at cell center.

2.2 Domain adoption method118

Starting with the technical implementation, a distinction between the computation domain119

and the complete geometry is required. Ideally, the smoke and heat source can be located120

and correspondingly the starting selection of the domain is constructed around it.121

4



ARTSS features an implementation for distinguishing between the total geometry (physical122

domain) and its subdomain to be calculated (computational domain). Both domains are123

mandatory cuboid and since ARTSS has no implementation of the concept of rooms, the124

expansion is done by adding planes of mesh cells in the extension direction. The size of the125

expansion can be defined by the variable expansion size. However, there is a restriction126

on the value of this variable due to the applied multi-grid method. This method requires127

the number of mesh points in a direction to fit the underlying restriction and prolongation128

steps. Accordingly, expansion size = 2level applies, where level stands for the number of129

levels of the multigrid method. The variable check value is used as a threshold and130

therefore determines if a cell is of interest and to become part of the computational131

domain. In the following examples, just the temperature is evaluated and not the smoke132

concentration. The cells, which are checked for smoke are specified by the variable buffer133

size. The complete plane is examined, in Fig. 2 marked by the gray level. buffer size134

determines the distance to the end of the computational domain. The time counter135

parameter is used to set the interval for the expansion check, e.g. every other time step.136

expansionbuffer

computation domain

Fig. 2. Parameter buffer size and expansion size in an exemplary scenario

On the implementation side, the expansion process is divided into three steps (cf. Fig. 3):137

The control step, which contains the update method, where the check whether to expand138

or not occurs, the perform step, which contains the methods resize and applyChanges,139

where the domain is expanded and new values are set and the third step adjust, where140

everything else is adjusted to fit the new size of the domain, e.g. setting new boundaries.141

The update and applyChanges methods, as well as the variables check value, buffer142

size, are part of an interface and can be easily replaced by the user with their own143

methods.144

In the approach used, the control step passes through the plane indicated by the buffer145

size cell by cell and checks if a cell exceeds the check value. If this is the case, an146

expansion is ordered and in step perform the values of the corresponding last cell are147

copied into the cells of the new domain.148

The control step contains a check of the plane defined by the buffer size. If a cell is149

found that exceeds the check value, an expansion is initiated. In the perform step the150

outermost cell (excluding the ghost cells) is used as reference cell. From this the containing151

5



run()

:Adaption Interface :Domain :Boundary

update()
Yes/No

Resize()

applyChanges()

updateLists()

Fig. 3. UML sequence diagram of expansion process in ARTSS. The class Adaption manages
everything regarding the expansion/adaption process. The Domain class contains data about
the domain (e.g. start position of domain, how many cells in a direction etc.). The Boundary
class is responsible for everything regarding the boundary. Interface is the interface to
which alternative approaches to adaptation can be inserted.

values – except the velocities – are taken and set for all new cells of the expansion as shown152

in Fig. 4.153

y
x

Fig. 4. Handling of new cells after an expansion in x-direction. The cells enclosed by the
thick black line corresponds to the computational domain. The red marked cells are ghost
cells.

3. Simulation setting of an example application154

3.1 Setup details155

The computational domain is a elongated rectangular geometry with open boundary156

conditions at the boundaries in x-direction, respectively a tunnel. We deliberately chose a157

6



simple geometry to demonstrate the domain expansion without being distracted by158

complex obstructions. In the first third of the tunnel (x = 30 m) the heat source is located,159

which is represented as a volumetric source term in the energy equation. For160

demonstration purposes very high gas temperatures were created, which do not correspond161

to real temperatures.162

Over time, the heated medium spreads across the tunnel, i.e. it rises to the ceiling and163

spreads along it. The spread is symmetrical until it reaches the closer left ending of164

simulation domain. Snapshots of the temperature field for the static and dynamic cases are165

shown in Fig. 5.166

Fig. 5. Temperature [K] field of tunnel scenario without (top) dynamic expansion, i.e. static
case, and with (bottom) a dynamic expansion, i.e. dynamic case. The bottom figure indicates
the computational domain at the shown simulation time.

For the open ends in x-direction (left and right boundary) an outflow boundary condition167

was chosen. No-slip boundary conditions are applied for the enclosing walls in the y- (top168

and bottom boundary) and z-direction (front and back boundary), see Fig. 6.169

no-slip boundary

no-slip boundary

out
flow

bou
nda

ry out
flow

bou
nda

ry

no-slip boundary

no-slip boundary

y

x
z

Fig. 6. Boundary conditions in the tunnel example.

The used settings are enlisted in Tab. 1 and Tab. 2. If variations were used, e.g. for170

speedup measurements (dt), it is explicitly indicated. For the static cases the171

computational domain is the same as the physical one.172

The hardware details of the machine on which the performance calculations were made can173

be found in Tab. 3. For the multicore version, only one of the two sockets with an eight174

core CPU was used.175

7



Physical parameters Value Unit

Simulation time tend 30 s
Kinematic viscosity ν 2.44139e-05 m2/s
Computational domain (x1, x2) (26, 34) m

(y1, y2) (−3, 3) m
(z1, z2) (−4, 4) m

Physical domain (X1, X2) (0, 128) m
(Y1, Y2) (−3, 3) m
(Z1, Z2) (−4, 4) m

Domain boundary condition
- front, back, top, bottom u, v, w 0 m/s
- left, right ∂nu, ∂nv, ∂nw 0 1/s
- front, back, top, bottom p 0 Pa
- left, right ∂np 0 Pa/m
- all walls ∂nT 0 ◦C/m

Numerical parameters

Time resolution dt 0.001 s
Number of inner cells Nx − 2 64

Ny − 2 16
Nz − 2 32

Tab. 1. Tunnel test case: Physical and numerical parameters

Fractional step Method Parameter

Advection Semi-Lagrangian
Diffusion Jacobi 100 iter’s or δtol = 1× 10−7

Turbulence Smagorinsky constant Cs = 0.2
Pressure Multigrid 2 cycles 6 levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7

Tab. 2. Tunnel test case: Solution method and parameters

The temporal dynamics of the domain adoption is illustrated in Fig. 7. The figures show176

the temperature profile at a fixed height and z = 0 along the x-direction over time. Here,177

the temperature field is evaluated and a threshold value determines if the domain needs to178

be extended. The graphs demonstrate the progress over time of the domain expansion and179

the temperature development. These cases visualise the dynamic adoption with two180

different values for the expansion size resulting in different regions that are added to the181

computational domain whenever the temperature threshold was met.182

8



Processor Details
CPU Intelr Xeonr CPU E5-2623 v4 @ 2.60GHz, 2x8 cores
GPU NVIDIA Pascal P100, PCIe, 1382 MHz, 720 GB/s, 16 GB, 3584 cores

Tab. 3. Hardware details

0 200 400 600

5

10

15

20

25

cells in x-direction

T
im

e
[s
]

500

1,000

1,500

2,000

te
m
p
er
at
u
re

[K
]

(a) expansion size = 1

0 200 400 600 800

5

10

15

20

25

cells in x-direction

T
im

e
[s
]

500

1,000

1,500

2,000

te
m
p
er
at
u
re

[K
]

(b) expansion size = 2

Fig. 7. Visual representation of the simulation with dynamic expansion of a domain slice over
time. The data below the stairs shows the domain that is not yet part of the computational
domain.

3.2 Comparison of static case with FDS183

To give a brief overview of the accuracy of ARTSS, the static case is compared with data184

simulated by FDS. As this is a generic setup, there is no experimental data to be compared185

with. A more detailed validation and verification, i.e. including more cases, of the models186

used in ARTSS can be found in [3].187

For the comparison with FDS the values of the heat release rate (HRR), the simulation188

time tend and the time step dt were adjusted to fit each other (cf. Tab. 4).189

HRR [MW] tend [s] dt [s] time steps
ARTSS 3.0 60 0.02 3000
FDS 3.6 60 dynamic 3278

Tab. 4. Adapted parameter for a comparison between ARTSS and FDS: Given the pure
convective heat release in ARTSS, 20% of the HRR was added to the FDS value to achieve
a similar effective HRR. In addition, unlike ARTSS, FDS uses a dynamic time step, which
is why the time step of ARTSS has been adapted to the number of time steps in FDS.

The first comparison was made at the end of the simulation, i.e. at t = 60 s, and the190

propagation of the ceiling jet was compared. As can be seen in Fig. 8, both simulations191

have similar smoke propagation.192

9



0 100 200 300 400 500 600 700 800 900 1,000
0

10

width [cells]

he
ig
ht

[c
el
ls
]

300

350

400

te
m
pe

ra
tu
re

[K
]

0 100 200 300 400 500 600 700 800 900 1,000
0

10

width [cells]

he
ig
ht

[c
el
ls
]

300

350

400

te
m
pe

ra
tu
re

[K
]

Fig. 8. Cross section of temperature profile at the end of the simulation t = 60 s. The
temperature values are limited to 400 K for better visual evaluation of the ceiling jet.

In general, the predicted temperature in ARTSS is higher than in the FDS simulation.193

Fig. 9 visualises the time evolution of the temperature at a fixed position. Furthermore,194

the course clearly shows that the data of the FDS simulation is much more dynamic than195

that of ARTSS, but the rough course is consistent. Given that ARTSS specialises in fast196

calculation of smoke propagation, these deviations are within reasonable limits.197

0 5 10 15 20 25 30 35 40 45 50 55 60
300.00

350.00

400.00

450.00

500.00

Time [s]

T
em

pe
ra
tu
re

[K
] ARTSS

FDS

Fig. 9. Temperature at point (height = 15, width = 200) over the whole simulation time

4. Analysis of execution time198

In the following, the effects of the expansion on the execution time are examined, how the199

individual parameters contribute to it and to what extent the result with dynamic200

expansion differs from the static simulations.201

4.1 Accuracy202

In many cases, the acceleration due to a dynamic domain expansion is at the cost of203

accuracy. The later the domain is expanded, the less has to be calculated, the shorter is the204

10



computing time. Overhead time is caused by the control step and the resulting perform and205

adjust steps, if an expansion is necessary. The methods of step control and step perform206

are designed in a very simple fashion to keep the additional time low and thus achieve as207

much acceleration as possible. Correspondingly, parameters that change the accuracy also208

influence the runtime and vice versa. The correlation between runtime and accuracy does209

not get further mentioned in the following, but is regarded as a generally resulting effect.210

To compare the static version with the dynamic version, the L2 norm for the entire domain211

at the end of the simulation was calculated. The difficulty is to determine, if an expansion212

is considered unsuccessful. This is the case if data was lost due to an delayed domain213

expansion. Fig. 10 shows an example of the x-velocity profile just before an expansion is214

triggered by the temperature field. This illustrates that information of the velocity field is215

already missing and thus may eventually change the simulation results.216

(a) Dynamic case (b) Static case

Fig. 10. x-velocity profile for static and dynamic case.
Therefore the validation is partly visual and the L2 norm is used to compare the loss of217

accuracy of the dynamic versions. For a result to be considered valid, the temperature218

development of the dynamic and static version needs to advance similarly. If the difference219

is plotted, images similar to Fig. 11 (left) are obtained for valid cases and for invalid220

images similar to Fig. 11 (right). Invalid cases are not further considered in the following221

examinations.222

500 1,000

10

cells in x-direction

ce
lls

in
y-
di
re
ct
io
n

−200

0

200

te
m
pe

ra
tu
re

[K
]

500 1,000

10

cells in x-direction

ce
lls

in
y-
di
re
ct
io
n

−200

0

200
te
m
pe

ra
tu
re

[K
]

Fig. 11. Temperature difference between dynamic and static version. Left: successful ex-
pansion. Right: failed expansion.

11



Accordingly, all simulations shown in the following sections are considered as valid –– w.r.t.223

the expansion procedure – and no large temperature differences were determined. After all,224

the user decides which deviation from the static version is acceptable.225

4.2 Parameter Influence on Accuracy226

A correlation can be observed in the inverse proportionality of buffer size and check227

value as can be seen in Fig. 12. The smaller the check value or the larger the buffer228

size, the earlier the expansion occurs and the difference to the static version becomes229

smaller.230

10 11 12 13 14 15 16 17 18 19 20
108.44

108.46

108.48

108.50

108.52

108.54

108.56

buffer size

L
2
N
or
m

check value = 320
check value = 325
check value = 330
check value = 340
check value = 345
check value = 350

320 325 330 335 340 345 350
108.44

108.46

108.48

108.50

108.52

108.54

108.56

check value

L
2
N
or
m

buffer size = 10
buffer size = 11
buffer size = 12
buffer size = 13
buffer size = 14
buffer size = 15
buffer size = 16
buffer size = 17
buffer size = 18
buffer size = 19
buffer size = 20

Fig. 12. Correlation between parameter check value and buffer size.

The earlier the domain is expanded, the longer the computing time, accordingly the choice231

of the two parameters affects the runtime. However, this follows from the general232

compromise between performance and accuracy, therefore it can be assumed that the two233

parameters only influence the performance indirectly as shown in Fig. 13. An earlier234

12



expansion leads to a bigger domain, which results in a slower runtime. In the graph, the235

runtime differences are very small, but the trend shows that it does make a difference even236

if it is small in percentage terms. This means that if a more complex algorithm were237

chosen for adaptation, the percentage could increase and the choice of check value and238

buffer size would have a much greater effect on the runtime.239

10 11 12 13 14 15 16 17 18 19 20

1,820

1,840

1,860

1,880

buffer size

R
un

ti
m
e
[s
] check value = 320

check value = 325
check value = 330
check value = 340
check value = 345
check value = 350

Fig. 13. Correlation between parameter check value and buffer size regarding runtime.

4.3 Performance240

For the performance analysis a test scenario was chosen where at the end of the simulation241

the domain size of the dynamic case corresponds to the domain size of the static case. The242

performance showed a speedup of 1.38 for the GPU, 1.51 for the multicore and 1.56 for the243

serial version with time step dt = 0.5 s (cf. Fig. 14 and Tab. 5), this time step differs from244

the described simulation setting in Tab. 2. In Tab. 5, the runtime of the GPU execution is245

higher than that of the multicore execution in the dynamic case. This is because in the246

current development stage, the routines for the domain extension still accesses serial parts247

in the code, which slows down the execution on a GPU considerably. This is due to the248

fact, that changes of data structure sizes are not handled well within OpenACC. Therefore249

data structures have to be exchanged between the GPU and CPU in the dynamic cases,250

while the static ones run fully on the GPU.251

1.40 1.45 1.50 1.55

0.5 s

Speedup

dt

GPU
Multicore
Serial

Fig. 14. Speedup of serial, multicore and
GPU version with time step dt = 0.5 s.

Serial Multicore GPU
Dynamic 605.0 97.5 98.1
Static 944.5 147.5 135.7

Tab. 5. Runtime [s] of serial, multicore and
GPU version with time step dt = 0.5 s.

13



The advantage of the dynamic expansion lies in the time it takes for the dynamic version252

to reach the same domain size as the static one. If the calculation time is increased, for253

example by reducing the time step, the speedup increases (cf. Fig. 15 and Tab. 7).254

1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62

0.1 s

0.5 s

Speedup

dt

GPU
Multicore
Serial

Fig. 15. Comparison of speedup of serial, multicore and GPU version for simulation with
time step dt = [0.5 s, 0.1 s].

Serial Multicore GPU
dt = 0.5 s 1.56 1.51 1.38
dt = 0.1 s 1.60 1.58 1.45

Tab. 6. Speedup of serial, multicore and GPU
version with time step dt = [0.5 s, 0.1 s].

Serial Multicore GPU
Dynamic 450.4 71.3 67.7
Static 721.7 112.3 98.9

Tab. 7. Runtime [s] of serial, multicore and
GPU version with time step dt = 0.1 s.

How exactly the dynamic expansion reduces the execution time is demonstrated by255

plotting the time for the individual time steps as shown in Fig. 16.256

It can be seen from the left subfigure that the runtimes of the individual time steps of the257

dynamic version, given by the smaller domain, are faster than those of the static version.258

The right image is a section of the left graph. The focus is on the runtime at the time of259

expansion (71st step). The running time is slightly higher than that of the previous points,260

but significantly lower than that of the following points. The difference of the runtime261

between the 71st step and the previous step corresponds to the additional effort resulting262

from the expansion procedure. Respectively, the combined time of step perform and step263

adjust. The form resembles the number of iterations of the Jacobi iteration, see Fig. 17.264

This is due to the fact that at the beginning of the simulation there is little dynamics with265

low velocities, as there is a smooth increase in heating power in the beginning. Therefore266

the calculation effort is lower in the first phase of the simulation.267

4.4 Parameter Influence on Performance268

The parameters expansion size and time counter have an indirect influence on the269

runtime, through their role within the steps control, perform and adjust. In order to270

14



0 100 200 300
0

1,000

2,000

3,000

4,000

T
im

e
[m

s]

Dynamic
Static

65 70 75 80

800

1,000

1,200

Time Step

Fig. 16. Runtime of the individual time steps. The times where an expansion occurred are
marked with blue dashed vertical lines. The right plot shows the section marked in the right
plot in a higher scale, at about time step 70.

0 100 200 300

0

20

40

60

80

100

Time Step

Ja
co
bi

It
er
at
io
ns

x-velocity y-velocity
z-velocity Temperature

Fig. 17. Number of Jacobi iterations per time step.

investigate the impact of time counter on the control step, a timing of the according code271

sections can done. Since the time required for control is in the microsecond range and272

varied in different time measurements, the method was artificially extended by one second273

for measurement purposes, otherwise the runtime could not be distinguished from274

measurement inaccuracies. As can be seen in Fig. 18, doubling the value of the time275

counter parameter halves the time spent in the method. If the term of control is276

considered without artificial extension, the ratio is too small for time counter to influence277

the global runtime (cf. Tab. 8). But even here the ratio shows a reversed proportionality to278

time counter. Thus, if a more time-consuming control method is used, the total runtime279

can be reduced by time counter. However, when choosing the time counter, it must be280

considered that a necessary expansion may be recognized too late and thus a falsified result281

is created (cf. Fig. 11 right).282

15



1 2 3

1

2

3
·109

time counter

R
un

ti
m
e
[µ
s]

Fig. 18. Runtime of step
control with different values
for time counter.

time counter Global Time [s] control [µs] Ratio [%]
1 1690.76 71010 4.2e-05
2 1689.31 35864 2.1e-05
3 1691.43 29422 1.7e-05

Tab. 8. Influence of step control on the global runtime with
different values for time counter.

And with the expansion size the total running time of the steps perform and adjust283

changes. The larger the expansion size, the less frequently expansion is required, thus284

the total runtime of perform and adjust decreases (cf. Fig. 19). The parameters expansion285

size and time counter are therefore mainly a tool to control the additional time effort286

that emerges from the expansion.287

1 2 3

10

20

24

12
8

expansion size

N
o.

of
ex
ec
.

(a) Number of executions
of perform and adjust

1 2 3

5.00

5.50

6.00
·104

expansion size

R
un

ti
m
e
[µ
s]

(b) Total runtime of step
perform

1 2 3

1.00

1.50

·106

expansion size

R
un

ti
m
e
[µ
s]

(c) Total runtime of step
adjust

Fig. 19. Influence of parameter expansion size on runtime of step perform and adjust.

5. Conclusions288

The aim of this contribution is to outline the impacts and consequences of a dynamic289

domain expansion for a smoke simulation in ARTSS, which can be summarised as follows:290

an acceleration of about 1.5 could be achieved by neglecting domains with lower291

temperature values. The approach for the type of examination and how the values of the292

new cells were substantiated after an expansion is kept very simple, but extendable in293

order to be able to implement complex extension criteria. It has been shown that the294

overhead caused by the expansion is negligible and can be effectively controlled by the295

parameters. Accordingly, more complex expansion methods can be used than those applied296

16



here. Instead of the current handling for new cells to copy from inner cells, e.g. a combined297

use of the temperature and velocity gradient might be a better approach to determine the298

new values. The ideal approach would be an adaptive one in which the parameters change299

with the propagation speed of the smoke. At the moment it is not possible to make a300

dynamic expansion with changing boundary conditions, which would be necessary, for301

example, if the scenario takes place in a closed environment. Furthermore, the GPU302

version is slower as the multicore version because of the forced GPU and CPU data303

exchange. However, this issue will be addressed in future code and compiler versions. It304

can be summarised that a significant runtime improvement can be achieved despite a305

simply chosen approach that offers a lot of potential for further acceleration.306

6. References307

[1] B. Steffen, U. Kemloh, M. Chraibi, and A. Seyfried. Parallel Real Time Computations308

of Large Scale Pedestrian Evacuation. In Proceedings of the Second International309

Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, /ed:310

P. Ivanyi, B.H.V. Topping, Civil-Comp Press, 2011. - 978-1-905088-44-7. - S. 95, 2011.311

[2] Tobias Kempe and Andreas Hantsch. Large-eddy simulation of indoor air flow using an312

efficient finite-volume method. Building and Environment, 115:291–305, 01 2017.313

[3] Anne Küsters. Real-Time Simulation and Prognosis of Smoke Propagation in314

Compartments Using a GPU. Dissertation, Bergische Universität Wuppertal, Jülich,315

2018.316

[4] Kevin McGrattan, Simo Hostikka, Randall McDermott, Jason Floyd, Craig317

Weinschenk, and Kristopher Overholt. Fire Dynamics Simulator User’s Guide, 2019.318

[5] Wolfram Jahn, Guillermo Rein, and José L Torero. Forecasting fire dynamics using319

inverse computational fluid dynamics and tangent linearisation. Advances in320

Engineering Software, 47(1):114–126, 2012.321

[6] F Michael Williams-Bell, B Kapralos, A Hogue, BM Murphy, and EJ Weckman. Using322

serious games and virtual simulation for training in the fire service: a review. Fire323

Technology, 51(3):553–584, 2015.324

[7] Anne Küsters, Sandra Wienke, and Lukas Arnold. Performance Portability Analysis for325

Real-Time Simulations of Smoke Propagation Using OpenACC. volume 10524 of326

Lecture Notes in Computer Science, pages 477 – 495, Cham, 2017. Springer327

International Publishing.328

17



Figure captions329

Fig. 1 2D collocated grid with ghost cells.330

Fig. 2 Parameter buffer size and expansion size in an exemplary scenario331

Fig. 3 UML sequence diagram of expansion process in ARTSS332

Fig. 4 Handling of new cells after an expansion in x-direction.333

Fig. 5 Tunnel scenario: Temperature field with and without dynamic expansion.334

Fig. 6 Boundary conditions in the tunnel example.335

Fig. 7 Visual representation of the simulation with dynamic expansion of a domain slice336

over time.337

Fig. 8 Cross section of temperature profile338

Fig. 9 Temperature at point (height = 15, width = 200) over the whole simulation time339

Fig. 10 x-velocity profile for static and dynamic case.340

Fig. 11 Temperature difference between dynamic and static version. Left: successful341

expansion. Right: failed expansion.342

Fig. 12 Correlation between parameter check value and buffer size.343

Fig. 13 Correlation between parameter check value and buffer size regarding runtime.344

Fig. 14 Benchmarking: Speedup of serial, multicore and GPU version for tunnel case.345

Fig. 15 Benchmarking: Speedup of serial, multicore and GPU version for tunnel case with346

different values for time step dt.347

Fig. 16 Runtime of the individual time steps.348

Fig. 17 Number of Jacobi iterations per time step.349

Fig. 18 Runtime of step control with different values for time counter.350

Fig. 19 Influence of parameter expansion size on runtime of step perform and adjust.351

18


