000888400 001__ 888400
000888400 005__ 20240712113121.0
000888400 0247_ $$2doi$$a10.1002/cphc.202000566
000888400 0247_ $$2ISSN$$a1439-4235
000888400 0247_ $$2ISSN$$a1439-7641
000888400 0247_ $$2Handle$$a2128/26362
000888400 0247_ $$2altmetric$$aaltmetric:89344407
000888400 0247_ $$2pmid$$a32705764
000888400 0247_ $$2WOS$$aWOS:000563888700001
000888400 037__ $$aFZJ-2020-04879
000888400 082__ $$a540
000888400 1001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b0$$eCorresponding author
000888400 245__ $$aPolyanionic Lattice Modifications Leading to High‐Entropy Sodium Ion Conductors: Mathematical Solution of Accessible Compositions
000888400 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2020
000888400 3367_ $$2DRIVER$$aarticle
000888400 3367_ $$2DataCite$$aOutput Types/Journal article
000888400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607261612_14040
000888400 3367_ $$2BibTeX$$aARTICLE
000888400 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888400 3367_ $$00$$2EndNote$$aJournal Article
000888400 520__ $$aSodium zirconium double phosphate NaZr2(PO4)3 can be used as a starting point for investigations of high‐entropy materials. Apart from the frequently used approach of partial substitution with four or more different transition metal cations, this class of materials also allows multiple substitutions of the phosphate groups. Herein modifications of the polyanionic lattice are considered and high‐entropy compositions are numerically determined with up to eight elements on the central tetrahedral lattice site of the so‐called NaSICON structure. For this study, the chemical formula was fixed as Na3Zr2(EO4)3 with E=B, Al, Si, P, As, Sb, S, Se and Te. The number of compositions increases exponentially with the increasing number of elements involved and with decreasing equal step size for each element. The maximum number of 237258 compositions is found for Na3Zr2([B,Al,Si,P,As,Sb,S,Se]O4)3 with a step size of 0.1 mol/formula unit. Of this compositional landscape, 143744 compositions fulfil the definitions of high‐entropy materials. The highest entropy factor of ΔSconfig/R=‐2.0405 is attributed to the compositions Na3Zr2(B0.5Al0.6Si0.4P0.3As0.3Sb0.3S0.3Se0.3)O12 and Na3Zr2(B0.6Al0.5Si0.4P0.3As0.3Sb0.3S0.3Se0.3)O12.
000888400 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000888400 588__ $$aDataset connected to CrossRef
000888400 7001_ $$0P:(DE-HGF)0$$aFronia, Carsten$$b1
000888400 773__ $$0PERI:(DE-600)2025223-7$$a10.1002/cphc.202000566$$gVol. 21, no. 18, p. 2096 - 2103$$n18$$p2096 - 2103$$tChemPhysChem$$v21$$x1439-7641$$y2020
000888400 8564_ $$uhttps://juser.fz-juelich.de/record/888400/files/HE-NASICON_2020.pdf$$yOpenAccess
000888400 909CO $$ooai:juser.fz-juelich.de:888400$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b0$$kFZJ
000888400 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000888400 9141_ $$y2020
000888400 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-15
000888400 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888400 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-15$$wger
000888400 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMPHYSCHEM : 2018$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-15
000888400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-15
000888400 920__ $$lyes
000888400 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000888400 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000888400 9801_ $$aFullTexts
000888400 980__ $$ajournal
000888400 980__ $$aVDB
000888400 980__ $$aUNRESTRICTED
000888400 980__ $$aI:(DE-Juel1)IEK-1-20101013
000888400 980__ $$aI:(DE-Juel1)IEK-12-20141217
000888400 981__ $$aI:(DE-Juel1)IMD-4-20141217
000888400 981__ $$aI:(DE-Juel1)IMD-2-20101013