001     888400
005     20240712113121.0
024 7 _ |a 10.1002/cphc.202000566
|2 doi
024 7 _ |a 1439-4235
|2 ISSN
024 7 _ |a 1439-7641
|2 ISSN
024 7 _ |a 2128/26362
|2 Handle
024 7 _ |a altmetric:89344407
|2 altmetric
024 7 _ |a 32705764
|2 pmid
024 7 _ |a WOS:000563888700001
|2 WOS
037 _ _ |a FZJ-2020-04879
082 _ _ |a 540
100 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 0
|e Corresponding author
245 _ _ |a Polyanionic Lattice Modifications Leading to High‐Entropy Sodium Ion Conductors: Mathematical Solution of Accessible Compositions
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607261612_14040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sodium zirconium double phosphate NaZr2(PO4)3 can be used as a starting point for investigations of high‐entropy materials. Apart from the frequently used approach of partial substitution with four or more different transition metal cations, this class of materials also allows multiple substitutions of the phosphate groups. Herein modifications of the polyanionic lattice are considered and high‐entropy compositions are numerically determined with up to eight elements on the central tetrahedral lattice site of the so‐called NaSICON structure. For this study, the chemical formula was fixed as Na3Zr2(EO4)3 with E=B, Al, Si, P, As, Sb, S, Se and Te. The number of compositions increases exponentially with the increasing number of elements involved and with decreasing equal step size for each element. The maximum number of 237258 compositions is found for Na3Zr2([B,Al,Si,P,As,Sb,S,Se]O4)3 with a step size of 0.1 mol/formula unit. Of this compositional landscape, 143744 compositions fulfil the definitions of high‐entropy materials. The highest entropy factor of ΔSconfig/R=‐2.0405 is attributed to the compositions Na3Zr2(B0.5Al0.6Si0.4P0.3As0.3Sb0.3S0.3Se0.3)O12 and Na3Zr2(B0.6Al0.5Si0.4P0.3As0.3Sb0.3S0.3Se0.3)O12.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fronia, Carsten
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1002/cphc.202000566
|g Vol. 21, no. 18, p. 2096 - 2103
|0 PERI:(DE-600)2025223-7
|n 18
|p 2096 - 2103
|t ChemPhysChem
|v 21
|y 2020
|x 1439-7641
856 4 _ |u https://juser.fz-juelich.de/record/888400/files/HE-NASICON_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888400
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-15
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-15
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMPHYSCHEM : 2018
|d 2020-09-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21