000888443 001__ 888443
000888443 005__ 20240313103130.0
000888443 0247_ $$2doi$$a10.1111/ejn.14868
000888443 0247_ $$2ISSN$$a0953-816X
000888443 0247_ $$2ISSN$$a1460-9568
000888443 0247_ $$2Handle$$a2128/28911
000888443 0247_ $$2altmetric$$aaltmetric:84366872
000888443 0247_ $$2pmid$$apmid:32558966
000888443 0247_ $$2WOS$$aWOS:000545417800001
000888443 037__ $$aFZJ-2020-04911
000888443 082__ $$a610
000888443 1001_ $$0P:(DE-Juel1)180369$$aMaith, Oliver$$b0
000888443 245__ $$aA computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI
000888443 260__ $$aOxford [u.a.]$$bWiley$$c2021
000888443 3367_ $$2DRIVER$$aarticle
000888443 3367_ $$2DataCite$$aOutput Types/Journal article
000888443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636121655_1187
000888443 3367_ $$2BibTeX$$aARTICLE
000888443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888443 3367_ $$00$$2EndNote$$aJournal Article
000888443 520__ $$aPrevious computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments.
000888443 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888443 588__ $$aDataset connected to CrossRef
000888443 7001_ $$00000-0003-0149-6231$$aVillagrasa Escudero, Francesc$$b1
000888443 7001_ $$00000-0002-8871-8177$$aDinkelbach, Helge Ülo$$b2
000888443 7001_ $$aBaladron, Javier$$b3
000888443 7001_ $$00000-0002-0695-6025$$aHorn, Andreas$$b4
000888443 7001_ $$00000-0001-5574-3790$$aIrmen, Friederike$$b5
000888443 7001_ $$00000-0002-4134-9060$$aKühn, Andrea A.$$b6
000888443 7001_ $$0P:(DE-HGF)0$$aHamker, Fred H.$$b7$$eCorresponding author
000888443 773__ $$0PERI:(DE-600)2005178-5$$a10.1111/ejn.14868$$gp. ejn.14868$$n7$$p2278-2295$$tEuropean journal of neuroscience$$v53$$x1460-9568$$y2021
000888443 8564_ $$uhttps://juser.fz-juelich.de/record/888443/files/ejn.14868.pdf$$yOpenAccess
000888443 909CO $$ooai:juser.fz-juelich.de:888443$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180369$$aForschungszentrum Jülich$$b0$$kFZJ
000888443 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888443 9141_ $$y2021
000888443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NEUROSCI : 2018$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-20$$wger
000888443 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-20
000888443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-20
000888443 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888443 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-20$$wger
000888443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20
000888443 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000888443 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000888443 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000888443 9801_ $$aFullTexts
000888443 980__ $$ajournal
000888443 980__ $$aVDB
000888443 980__ $$aUNRESTRICTED
000888443 980__ $$aI:(DE-Juel1)INM-6-20090406
000888443 980__ $$aI:(DE-Juel1)IAS-6-20130828
000888443 980__ $$aI:(DE-Juel1)INM-10-20170113
000888443 981__ $$aI:(DE-Juel1)IAS-6-20130828