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Abstract
Previous computational model-based approaches for understanding the dynamic 
changes related to Parkinson's disease made particular assumptions about Parkinson's 
disease-related activity changes or specified dopamine-dependent activation or 
learning rules. Inspired by recent model-based analysis of resting-state fMRI, we 
have taken a data-driven approach. We fit the free parameters of a spiking neuro-
computational model to match correlations of blood oxygen level-dependent signals 
between different basal ganglia nuclei and obtain subject-specific neuro-computa-
tional models of two subject groups: Parkinson patients and matched controls. When 
comparing mean firing rates at rest and connectivity strengths between the control 
and Parkinsonian model groups, several significant differences were found that are 
consistent with previous experimental observations. We discuss the implications of 
our approach and compare its results also with the popular “rate model” of the basal 
ganglia. Our study suggests that a model-based analysis of imaging data from healthy 
and Parkinsonian subjects is a promising approach for the future to better understand 
Parkinson-related changes in the basal ganglia and corresponding treatments.
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1  |   INTRODUCTION

Neuroimaging methods have contributed greatly to the 
understanding of the human brain. Functional magnetic 
resonance imaging (fMRI) measures neuronal activation 
indirectly through changes in blood flow and oxygen sat-
uration. In resting-state fMRI (rs-fMRI; Biswal, Zerrin 
Yetkin, Haughton, & Hyde, 1995; He et al., 2009), the spon-
taneous fluctuations of the blood oxygen level-dependent 
(BOLD) signal are measured while the subjects remain in 
a constant resting state. Then correlations of BOLD signals 
between different brain regions can be determined, which 
are called functional connectivity in the field of rs-fMRI 
(Friston,  2011). Although there is no direct link between 
these correlations of BOLD signals and the underlying neu-
ronal connectivity or functionality, several studies showed 
that the spontaneous fluctuations of the BOLD signals have 
a neurophysiological basis (Biswal et  al.,  1995; Brookes 
et al., 2011; He, Snyder, Zempel, Smyth, & Raichle, 2008). 
Computational models have greatly complemented the anal-
ysis of functional connectivity (for a review see Popovych, 
Manos, Hoffstaedter, & Eickhoff 2019). Detailed biolog-
ically inspired models of the brain can be adjusted to re-
produce the observable neuroimaging data and then can be 
examined in detail on various scales. Thus, this model-based 
analysis allows to extract information, such as connectiv-
ity strengths and spiking activity, that cannot be achieved 
from the imaging data alone. Several computational stud-
ies have demonstrated the potential of this approach (Cabral 
et al., 2013; Deco & Jirsa, 2012; Deco et al., 2013; Schirner, 
McIntosh, Jirsa, Deco, & Ritter, 2018; Schmidt et al., 2018; 
Van Hartevelt et al., 2014).

We here use these techniques to reveal more insight into 
functional connectivity changes induced by Parkinson's 
disease (PD), which is a neurological disorder character-
ized by numerous motor, but also non-motor symptoms 
(Jankovic,  2008). It is directly or indirectly resulting from 
the loss of dopaminergic cells in the substantia nigra pars 
compacta (SNc), which leads to a reduced level of dopa-
mine (DA) in its target structures such as in the striatum 
and pallidum, main nuclei of the basal ganglia (Bernheimer, 
Birkmayer, Hornykiewicz, Jellinger, & Seitelberger,  1973), 
which in turn likely affects processing in the cortex–basal 
ganglia loops (for reviews Galvan, Devergnas, & Wichmann 
2015; Nambu, Tachibana, & Chiken, 2015)]). The findings 
about the changes in the basal ganglia due to PD have been 
integrated into conceptual models, such as the influential rate 
model of the basal ganglia (Albin, Young, & Penney, 1989; 
DeLong, 1990). As post hoc, conceptual models have less pre-
dictive power, neuro-computational models at different levels 
of detail have been developed to reveal further insight into 
differences between healthy and Parkinsonian states of pro-
cessing within the basal ganglia (for reviews see Humphries, 

Obeso, & Dreyer, 2018; Maia & Frank, 2011; Rubin, 2017; 
Schroll & Hamker, 2016).

In those models, a PD state has been either introduced 
by rules that affect the neural activity of striatal projection 
neurons dependent on DA or DA-dependent learning rules 
or by directly assuming changes in functional connectivity 
strengths. While those assumptions are generally well moti-
vated by findings, the particular validity of each assumption 
is difficult to prove. Thus, the predictions made by these neu-
ro-computational models with respect to how PD changes 
processing in the basal ganglia critically depend on assump-
tions built into the model about the Parkinsonian state.

Here, we present a completely different approach to ex-
plore PD-related changes in basal ganglia processing which 
is more data-driven. We fit a spiking neuro-computational 
model of the basal ganglia to experimental functional con-
nectivity data from PD patients and control subjects. The 
data from PD patients have been previously obtained by Horn 
et  al.  (2019). Instead of including specific assumptions on 
DA deficiency in the basal ganglia in our model, we only 
assume that PD leads to altered connectivity in the basal gan-
glia. The connectivity parameters of the different connections 
of our spiking neuro-computational model are adjusted in-
dividually to match each PD patient's and control subject's 
functional connectivity data comprising the sensory-motor 
parts of the cortex, subthalamic nucleus (STN), striatum, 
internal and external globus pallidus (GPi, GPe) and thala-
mus providing us an individual model for each PD patient 
and control subject. While parameter fitting took place at the 
level of correlations in BOLD signals, we bridge scales and 
obtain individual spiking resting-state models of the cortex–
basal ganglia motor loop. We analyze the data-induced com-
putational differences between the control and patient group 
and compare them with the rate model of the basal ganglia 
(DeLong, 1990) and recent data.

2  |   MATERIALS AND METHODS

2.1  |  Data acquisition

The rs-fMRI data used here are from the PD patients in 
deep brain stimulation OFF condition (DBS OFF) and con-
trol subjects studied in resting state by Horn et  al.  (2019). 
Particularly, we look at (for each subject) the functional con-
nectivity of the basal ganglia, thus the correlations between 
the BOLD time series obtained in the following brain areas of 
the motor brain: cortex, STN, striatum, GPe, GPi and thala-
mus. As these motor brain areas are symmetrical in the left 
and right hemisphere, our data consist of two functional con-
nectivity matrices per subject, one related to these six brain 
areas on the left side and the other to the same brain areas on 
the right side of the brain.
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In the study carried out by Horn et al. (2019), PD patients 
(20 in total, four of them were women) were scanned (with a 
repetition time of 2,690 ms) first during DBS ON and after an 
interval of 5–15 min with the impulse generator switched off 
(DBS OFF). Patients were 63 ± 6.6 (M ± SD) years old when 
DBS surgery took place and they were scanned 30 ± 21 months 
after surgery with their usual medication ON (Levodopa). The 
rs-fMRI time series were detrended; noise related to motion, 
cerebrospinal fluid, and white-matter were removed; and a 
bandpass filter between 0.009 and 0.08 Hz was applied. For 
details about medication, patients’ inclusion criteria, scanner, 
preprocessing of BOLD time series, voxel-wise parcellation 
and links to open sources please see Horn et al. (2019).

Controls (15 in total, four were female) were 59.5 ± 11.9 
years old, and their rs-fMRI data were collected within 
Parkinson's Disease Progression Marker Initiative (PPMI) da-
tabase (ppmi-info.org; Marek et  al.,  2011). These data were 
processed identically to the patients’ data of the same study.

2.2  |  Network description

We used a spiking neuro-computational model of the basal 
ganglia based on our previous work (Baladron, Nambu, & 
Hamker, 2019), but determined the connectivity parameters 
by an optimization procedure. The model is composed of 
several populations of spiking neurons, each representing a 
different nucleus of the basal ganglia, thalamus or cortex. 
The membrane potential of each cell is computed using the 
Izhikevich (2004) neuron model:

where V is the membrane potential, U the recovery variable, 
gAMPA and gGABA the synaptic conductances, EAMPA and 
EGABA the corresponding reversal potentials, C the mem-
brane capacity, I the baseline input current and µ the noise of 
the synaptic input current. Further, n2, n1, n0, a, b, c and d are 
parameters that depend on the neuron type of the correspond-
ing population. The fixed parameters for each population are 
shown in Table 1. When the membrane potential V reaches 
30 mV (40 mV for striatal neurons), the action potential is 
considered being triggered, the membrane potential V is reset 
to the value c and the recovery variable U is increased by d.

The noise µ of the synaptic input current fluctuates between 
different random fixed points introduced by changing the value 
SN of each neuron after every second of simulation. The values 
of SN are drawn from a normal distribution with a mean value 
(MSN) of 0. The standard deviation SDSN of this distribution de-
pends on the corresponding population (Table 1). The cortex is 
considered having higher levels of noise in order to drive the net-
work, and therefore, instead of a mean MSN of 0 the mean value 
MSN is drawn from a uniform distribution ranging from −5 to 5.

The striatum is modeled by two populations of 200 in-
hibitory spiny projection neurons. One of these populations 
represents the direct spiny neurons (dSN) which initiate the 
direct pathway through their projections to the GPi while the 
other population represents the indirect spiny neurons (iSN) 
which initiate the indirect pathway through their projections 
to the GPe (Figure 1). The parameters for these two neuron 
types were taken from the model of Humphries, Wood, and 
Gurney (2009). Humphries, Wood, et al. (2009) tuned and 
extended a medium spiny neuron model of Izhikevich (2007; 
for details see Humphries, Lepora, Wood, & Gurney, 2009) 
to replicate data of a complex multi-compartment model 
(Moyer, Wolf, & Finkel, 2007) which matches in vitro whole-
cell recordings from medium spiny neurons within the nu-
cleus accumbens of rats (Wolf et al., 2005).

The GPi, GPe, STN and the thalamus are modeled each 
by an additional population of 200 spiking neurons. For the 
GPi, GPe and STN populations, the parameters were taken 
from Thibeault and Srinivasa (2013), who got their parame-
ters by recreating the basal ganglia model for action selection (1)

dV

dt
=n2V2+n1V+n0−U∕C−gAMPA

�
V−EAMPA

�
−gGABA

�
V−EGABA

�
+ I+�

dU

dt
=a (bV−U)

�AMPA

dgAMPA

dt
=−gAMPA

�GABA

dgGABA

dt
=−gGABA

�
�

d�

dt
=−�+SN

if V≥30 mV, then

⎧⎪⎨⎪⎩

V← c

u←u+d

T A B L E  1   Parameter values for the neuron models

Population a b c (mV) d C I n0 n1 n2 SDSN

Striatum 0.05 −20 −55 377 50 0.0 61.65 2.59 0.02 2

GPi 0.005 0.585 −65 4 1 30.0 140 5 0.04 3

GPe 0.005 0.585 −65 4 1 12.0 140 5 0.04 5

STN 0.005 0.265 −65 2 1 3.0 140 5 0.04 2

Thalamus 0.02 0.25 −65 0.05 1 3.5 140 5 0.04 2

Cortex 0.02 0.2 −72 6 1 50.0 140 5 0.04 10

CortexI 0.02 0.2 −72 6 1 0.0 140 5 0.04 0
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of Humphries, Stewart, and Gurney (2006) with Izhikevich 
spiking neuron models. The model of Humphries et al. (2006) 
matches in vivo single-cell recordings and tonic firing rates 
from the STN and the globus pallidus of rats. Both parameter 
sets were also used in Baladron et al. (2019). For the thalamic 
population, the parameters of the phasic bursting model pro-
posed by Izhikevich (2004) were used. The values of all cell 
parameters are given in Table 1.

Following our previous modeling approach Baladron 
et al. (2019), the GPe projects to the GPi and has reciprocal 
connections with the STN. The GPi combines excitatory input 
from the STN with the inhibitory input from both the dSN 
and the GPe and provides a constant inhibition to the thala-
mus. Further, the thalamus provides feedback to all striatal 
cells, thus closing a basal ganglia–thalamus loop (Hunnicutt 

et  al.,  2016; Parent & Parent,  2004; Sadikot, Parent, & 
Francois, 1992; Sidibé, Bevan, Bolam, & Smith, 1997; Smith 
et al., 2014). Additionally, local inhibitory connections were 
included in the GPi, GPe, dSN and iSN population.

The cortex is modeled by two populations: one excitatory 
and one inhibitory. The excitatory population is composed of 
600 neurons while the inhibitory of 150, following the observed 
proportion between cortical projection cells and interneurons. 
For both populations, the parameters of the tonic spiking model 
proposed by Izhikevich (2004) were used. The populations form 
an excitatory–inhibitory loop, with connection probabilities and 
weights set by the optimization process. The excitatory cortical 
cells project to all striatal cells and to the STN.

Synaptic contacts of cells between nuclei were defined 
stochastically, given a connection probability determined 
by the optimization procedure. We use conductance-based 
synapses in our neuron models. Therefore, the synaptic cur-
rent of a cell depends on the reversal potential (ESYN) and 
the synaptic conductance (gSYN) of the individual synapses. 
Excitatory connections are modeled by AMPA synapses 
and inhibitory connections by GABA synapses. A positive 
AMPA conductance drives the membrane potential to the 
value of EAMPA = 0 mV and the GABA conductance drives 
the membrane potential to the value of EGABA  =  −90  mV. 
The conductances of these synapses decay exponentially, 
with time constants τAMPA = 10 ms and τGABA = 10 ms (see 
Equation 1). The rise of the synaptic conductance after a pre-
synaptic action potential is modeled as an instantaneous in-
crease by the weight value of the connection.

The neuro-computational model has been implemented 
using the ANNarchy neural simulator (Vitay, Dinkelbach, & 
Hamker, 2015; version 4.6.9b). To solve the differential equations 
of the model, the Euler method is used with a time step of 0.1 ms.

2.3  |  BOLD signal computation

The BOLD signal is computed using the Balloon model as 
described by Friston, Mechelli, Turner, and Price (2000); 
however, as shown in Table 2, some parameters, including 
the time constant of the BOLD signal, have been selected 
from Friston, Harrison, and Penny (2003). Previous stud-
ies motivated that the neural input (synaptic activity) is a 
better predictor of the BOLD signal than the output signal 
(Logothetis, Pauls, Augath, Trinath, & Oeltermann,  2001; 
Mathiesen, Caesar, Akgören, & Lauritzen, 1998; Mathiesen, 
Caesar, & Lauritzen, 2000). Therefore, and similar to recent 
studies (Schmidt et al., 2018), our BOLD signal computation 
relies on the synaptic activity (Figure 2). The procedure used 
has been included into ANNarchy. A new type of monitor 
was added which can be attached to neuron populations in 
order to obtain a simulated BOLD signal. First, synaptic ac-
tivity is computed at the single neuron level:

F I G U R E  1   Structure of the basal ganglia model. Rectangles 
represent individual neuron populations. Arrows represent connections. 
The model consists of single spiking neuron populations for each 
main nuclei of the basal ganglia as described in the main text and 
further populations for the cortex and cortical interneurons (cortexI). 
With its connections, the model forms the direct (cortex–dSN–GPi), 
indirect (cortex–iSN–GPe–GPi and cortex–iSN–GPe–STN–GPi) and 
hyperdirect (cortex–STN–GPi) pathway. For each connection, the 
synaptic contacts of cells between the presynaptic and postsynaptic 
population were defined stochastically, given a connection probability. 
A connection probability of 1 means that every neuron of the post-
population is connected with all the neurons of the pre-population. 
Each connection has its own weight value, which is set as the weight 
for all the synaptic contacts of the corresponding connection. The 
connection probability and weights of all connections are fitted as 
described in the main text. dSN—direct striatal spiny projection 
neurons, iSN—indirect striatal spiny projection neurons, STN—
subthalamic nucleus, GPe—external globus pallidus, GPi—internal 
globus pallidus
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Each neuron has its own synaptic activity sj. It decays ex-
ponentially, with the time constant τsyn = 1 ms. Whenever a 
presynaptic action potential reaches a neuron (no matter if ex-
citatory or inhibitory), its synaptic activity sj is increased by 
1 divided by the number of all afferent synaptic contacts naff,j 
of this neuron. The theoretical maximum increase in sj in one 

time step is therefore 1 (if presynaptic action potentials would 
occur at all synaptic contacts simultaneously). The calcula-
tion of the synaptic activity of a given region SR is described 
by Equation 3.

It is calculated as the sum of all mean synaptic activities 
of the neuron populations belonging to the region p∈R with 
population sizes Np. Only the striatum region (dSN and iSN) 
and the cortex region (excitatory and inhibitory) consist of 
more than one neuron population. Finally, before feeding the 
synaptic activity SR into the Balloon model to produce the 
BOLD signal of the region, a noise value �R (randomly drawn 
every second from a uniform distribution between 0 and 0.05) 
is added to the synaptic activity SR in order to model the noise 
affecting the BOLD signal.

2.4  |  Fitting procedure

For each subject, a functional connectivity for the left and for 
the right hemisphere of the brain was available. We fitted our 
model to the functional connectivity of each hemisphere of a 
subject independently resulting in 15 controls for the left side 
and 15 more for the right side and 20 patients for the left side 
and 20 more for the right side.

To fit the model to the functional connectivity of a subject 
(patient/control, left/right), we used the Bayesian Adaptive 
Direct Search (BADS) algorithm (Acerbi & Ji, 2017). This 

(2)

�syn

dsj

dt
=−sj

ifpresynapticactionpotentialoccurs,thensj ← sj+
1

naff,j

(3)SR =
∑
p∈R

1

Np

Np∑
j

sj+�R

T A B L E  2   Parameterization of the balloon model implemented in 
ANNarchy

Parameter Value Source

E0 0.3424 Corresponds to ρ in 
Friston et al. (2003)

V0 0.02 Friston et al. (2000), 
Friston et al. (2003)

τ0 1.0368 Corresponds to τ in 
Friston et al. (2003)

Α 0.3215 Friston et al. (2003)

κ 0.665 Friston et al. (2003), 
corresponds to 1/τs in 
Friston et al. (2000)

γ 0.412 Friston et al. (2003), 
corresponds to 1/τf in 
Friston et al. (2000)

ϵ 1.0

Note: The parameters were selected based on table 1 in Friston et al. (2003). The 
τ0 is the time constant of the BOLD signal.

F I G U R E  2   Simplified scheme of how the BOLD signal in a particular region is computed from the neural activity targeting this region. We 
take here the example of the striatum region. First, the rate activity in the cortex, dSN, iSN and thalamus targeting the cells in the striatum (top 
dSN, bottom iSN) is shown. For simplicity, we only plot 6 neurons of the dSN and iSN (12 small circles). How the synaptic activity sj changes at 
the single neuron level is described in the main text. For each population of the region (here dSN and iSN), the mean of the synaptic activities sj is 
calculated. Then, the means of the populations are added to obtain the synaptic activity SR of the region (here the striatum). Finally, the obtained 
synaptic activity in the striatum, with the addition of noise (�R), is sent to the Balloon model which computes the BOLD signal for the striatum (see 
the plot with the BOLD signal over time). The plots are obtained from simulating the model for 20 s and recording spikes, synaptic activity and 
bold signal 10 times per second. dSN—direct striatal spiny projection neurons, iSN indirect striatal spiny projection neurons
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is a general model-fitting tool and a free MATLAB package. 
For the fitting of each functional connectivity, we carried out 
20 optimization processes with BADS. Each optimization 
process consisted of multiple optimization steps.

In an optimization step, BADS first selected the values of 
the 19 weights and probabilities. Then, a 250 s fitting simu-
lation with the model was carried out, in which for each sec-
ond, BOLD signal values of the cortex, STN, striatum, GPi, 
GPe and thalamus were stored, resulting in six BOLD time 
series. Then, the Pearson correlation matrix between these 
six signals was computed, which is the functional connec-
tivity of the model. Finally, the loss value was obtained as 
defined in Equations 4 and 5:

where the loss is the Frobenius norm of the difference (D) 
between the functional connectivity of the model (FCM) and 
the functional connectivity of the subject (FCs).

In each optimization process, BADS runs multiple optimi-
zation steps, each with different values for the 38 connectiv-
ity parameters, until the loss value converges to a minimum. 
In each of the 20 optimization processes, different initial val-
ues were randomly drawn for the 38 parameters. The proba-
bilities and weights were initialized from a random uniform 
distribution ranging from 0.1 to 0.3 and from 0.005 to 0.01, 
respectively. The parameter values were limited in the range 
between 0.1 and 0.5 for the probabilities and between 0.005 
and 0.015 for the weights. Finally, for each subject, we se-
lected the 38 connectivity parameters of the optimization 
process that resulted in the lowest loss value.

2.5  |  Rest period simulations

We compared the obtained individual models between the 
different groups (PD patients and controls) with respect to 

the mean firing rates at rest. Therefore, additional simula-
tions were performed with the models (see Table  3 for an 
overview).

To obtain the mean firing rates at rest, a 15-s resting pe-
riod was simulated for each model (fitted to a specific sub-
ject). The same seed value was set for all simulations. Thus, 
the simulations differed only in the fitted connection param-
eters. The cortex input current in these simulations was set 
to I  =  7. In addition, the random mean cortical firing rate 
fluctuations have been deactivated by setting the mean value 
of the normal distribution from which the noise values SN are 
drawn to a constant value of 0, as with the other populations. 
Thus, ensuring that the cortex population has an average fir-
ing rate around 10–15 Hz, which is common for neurons of 
the motor cortex at rest (Velliste et al., 2014).

2.6  |  Sensitivity analysis

There are many predefined neuron parameters (Table  1) in 
our model. Although most of them are well motivated by pre-
vious studies (Humphries, Lepora, et al., 2009; Thibeault & 
Srinivasa, 2013), it is unlikely that these parameters are ex-
actly like those of the individual human subjects. Variations 
in the predefined parameters may affect the values of the fitted 
connectivity parameters. Therefore, we conducted a sensitiv-
ity analysis in which we varied all the predefined non-zero pa-
rameters of Table 1 to estimate how sensitive our results are to 
variations. Although the parameters of the neuron types of the 
excitatory (cortex) and inhibitory (cortexI) cortical neurons 
are given separately in Table 1, we used the same parameter 
values for cortexI as for cortex, except for I and SD, which 
are always zero for cortexI. As it was not possible for us to 
investigate how the predefined parameters would affect the 
fitted connectivity parameters due to the long duration of the 
fitting procedure (over one month for the 70 fitted models), 
we only investigated the sensitivity of the loss of the already 
fitted models. For each fitted model, we varied each of the 59 
parameters from −5% to +5% in 0.3125% increments of its 
value specified in Table 1 while leaving the other 58 parame-
ters constant. The simulation procedure was the same as in the 

(4)D=FCM−FCS

(5)loss=

(∑
i,j

|||Di,j
|||
2

)1∕2

Fitting simulation Resting-state simulation

Cortical drive I = 50 I = 7

MSN  = uniform(−5, 5) MSN = 0

Simulation procedure Initial simulation = 15 s Initial simulation = 5 s

Simulations duration = 250 s Simulation 
duration = 10 s

Analyzed data Pearson correlation matrices of 
the BOLD time series of all 
BOLD regions

Spike trains of all 
populations

T A B L E  3   Overview of the different 
simulation paradigms
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fitting simulations (Fitting simulation, Table 3) and differed 
only in parameter initialization. The connectivity parameters 
(weights and probabilities) were not randomly initialized in-
stead the parameter values obtained by the previous optimi-
zation procedure for each fitted model were used. Further in 
each simulation, one predefined parameter deviated from its 
standard value as described above.

3  |   RESULTS

3.1  |  Fitting results

Models fitted to the left and right hemispheres of each subject 
are treated as individual models for the control and patient 
group in the analyses, providing us with 30 control and 40 
patient models. Examples of experimental and their corre-
sponding fitted functional connectivities of two control and 
two patient subjects are shown in Figure 3. The mean loss 
of all the fitted functional connectivities is M  =  1.10 with 
a standard deviation of SD  =  0.20. Further, we calculated 
the pairwise correlation (Pearson correlation coefficient) be-
tween each fitted and the corresponding experimental func-
tional connectivity. The mean correlation of all the fitted 
functional connectivities is M = 0.89 with a standard devia-
tion of SD = 0.04.

To verify if the fitted models can be clustered into differ-
ent groups of models (control/patient), we tested if the con-
trol models fit significantly better to the experimental control 
data than to the experimental patient data and vice versa for 
the patient models. Thus, for each group (controls/patients) 
we calculated the losses between the functional connectivities 
of the models and the mean experimental functional connec-
tivity (MEFC) of both groups, according to Equation 4. Then 
for each group of models, we compared the losses obtained 
from the control MEFC with the losses obtained from the pa-
tient MEFC by performing an one-tailed t test for dependent 

samples. The significance of the two tests was determined 
with a significance level of α = 0.05 and further Bonferroni 
correction. As shown in Table 4, the functional connectivities 
of the control models have a significantly lower loss to the 
control MEFC than to the patient MEFC and vice versa for 
the patient models, meaning that our fitting processes led to 
two different groups of models.

3.2  |  Comparison between patient and 
control models

In order to compare our results with the popular rate model 
of PD (Albin et al., 1989; DeLong, 1990), we computed the 
connection strengths between nuclei as a multiplication of 
weight value and connection probability. We compared the 
connection strengths of the control group with the connection 
strengths of the patient group by a two-tailed t test for inde-
pendent samples. The significance of the resulting 19 tests 
was determined using the false discovery rate (FDR) method 
(Benjamini & Hochberg, 1995) with a significance level of 
α = 0.05. The results are shown in Table 5. Several significant 
differences in the connection strengths were found. Almost 
all significant differences have large effects according to the 
Cohen's d greater than 0.8 everywhere. Most connections 
were stronger in the patient group. Looking at the connection 
strengths in the direct, indirect and hyperdirect pathway, all 
three pathways were stronger in the Parkinsonian models. In 
the direct pathway, the dSN–GPi connection strength was in-
creased by 69.4% and in the hyperdirect pathway the cortex–
STN connection strength was increased by 22.9%. Especially 
noticeable were the differences in the indirect pathway. The 
increase in the cortex–iSN connection strength was particu-
larly high at 110.2% and had also by far the largest effect 
size at 1.75. Further, the GPe–STN connection strength was 
increased by 81.5% and the GPe–GPi connection strength by 
33.0%.

F I G U R E  3   Examples for experimental 
and simulated functional connectivities 
(BOLD correlation matrices) of the 
corresponding fitted models. (a) and (b) 
show the correlation matrices of two control 
subjects, left experimental, right simulated. 
(c) and (d) show the correlation matrices 
of two PD patients, left experimental, right 
simulated. The different examples illustrate 
that the model was able to reproduce 
different shapes of correlation matrices
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To obtain mean firing rates at rest, a 15-s rest period was 
simulated with each model. The last 10 s of these 15-s rest 
periods were used to obtain the mean firing rates. To calcu-
late the mean firing rate of a region, the number of spikes, 
which occurred in the respective population, was divided by 
the time and population size. We compared the mean firing 
rates between the control and patient models by a two-tailed 
t test for independent samples for each region. The signifi-
cance of the resulting 8 tests was determined using the FDR 
method (Benjamini & Hochberg, 1995) with a significance 
level of α = 0.05. The results are shown in Table 6. The rela-
tive changes of the mean firing rates and connection strengths 
from the control group to the patient group are summarized 
in Figure  4. For the mean firing rates, several significant 

differences with medium or large effect sizes were found. 
Mostly, the mean firing rates were lower in the patient group 
models. Particularly, high reductions in the mean firing rate 
occurred for GPe (−16.0%, Cohen's d = −1.04) and thalamus 
(−31.9%, Cohen's d = −1.05). Again, the iSN was especially 
noticeable. Here we observed by far the largest increase in 
the mean firing rate with a relative change of 109.8% and an 
effect size of 1.81.

We further investigated how homogeneous the models of 
the control group and the patient group were. Therefore, we 
calculated the coefficient of variation (CV) of the mean fir-
ing rates and of the connectivity strengths for each group. 
The CV value results from dividing the standard deviation 
by the mean of a sample. The CV values of the control and 

Mc (SDc) Mp (SDp) t df p d

Control models 1.02 (0.25) 1.52 (0.24) −6.54 29 <.001* 2.03

Patient models 1.89 (0.48) 1.26 (0.22) 7.81 39 <.001* −1.66

Note: Mc/SDc are the means/standard deviations of the losses between the functional connectivities of the 
models and the mean experimental functional connectivity of the control group. Mp/SDp are the means/standard 
deviations of the losses between the functional connectivities of the models and the mean experimental 
functional connectivity of the patient group. An one-tailed t-test for dependent samples was made to compare 
these two samples. A * indicates significance after Bonferroni correction for a significance level of α = 0.05.

T A B L E  4   The fitting results

Connection
Mc (SDc) 
e−3

Mp (SDp) 
e−3 t df p d

dSN-GPi 1.93 (1.30) 3.27 (1.81) −3.38 68 .001* 0.85

iSN-GPe 3.56 (0.98) 3.80 (1.70) −0.70 68 .486 0.18

GPe-STN 1.46 (0.53) 2.65 (1.23) −4.91 68 <.001* 1.26

STN-GPe 4.51 (0.78) 3.66 (1.18) 3.38 68 .001* −0.85

STN-GPi 3.52 (0.64) 3.06 (1.30) 1.78 68 .079 −0.46

GPe-GPi 2.30 (0.65) 3.06 (1.16) −3.20 68 .002* 0.81

GPe-GPe 2.34 (0.70) 3.25 (0.84) −4.70 68 <.001* 1.17

GPi-GPi 3.78 (0.65) 4.02 (1.79) −0.69 68 .492 0.18

GPi-Thalamus 1.98 (0.84) 3.32 (1.20) −5.18 68 <.001* 1.30

Thalamus-iSN 1.30 (1.10) 2.98 (1.64) −4.78 68 <.001* 1.20

Thalamus-dSN 1.82 (1.25) 3.45 (2.04) −3.83 68 <.001* 0.97

dSN-dSN 3.56 (0.66) 3.64 (1.63) −0.25 68 .805 0.06

iSN-iSN 3.02 (0.51) 2.50 (0.78) 3.16 68 .002* −0.80

Cortex-dSN 1.78 (0.39) 2.12 (1.03) −1.71 68 .092 0.44

Cortex-iSN 1.36 (0.74) 2.86 (0.95) −7.03 68 <.001* 1.75

Cortex-STN 2.27 (0.43) 2.79 (1.05) −2.53 68 .014* 0.65

Cortex-CortexI 4.13 (0.52) 3.96 (1.40) 0.62 68 .540 −0.16

CortexI-Cortex 2.74 (0.68) 3.69 (0.98) −4.52 68 <.001* 1.14

CortexI-
CortexI

3.27 (0.65) 3.87 (1.26) −2.37 68 .020* 0.61

Note: Mc/SDc are the means/standard deviations of the connection strengths of all models of the control group. 
Mp/SDp are the means/standard deviations of the connection strengths of all models of the patient group. A 
two-tailed t-test for independent samples was made to compare these two samples. A * indicates significance 
after FDR correction for a significance level of α = 0.05.

T A B L E  5   The mean connection 
strengths
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patient group for all the regions and connections are shown in 
Tables 7, 8, 9, and 10. To compare the CV values between the 
control and patient groups, a two-tailed t test for dependent 
samples was performed. The changes of all the individual 

CV values of the connectivity strengths and mean firing rates 
are illustrated in Figure 5. The mean of all CV values was 
significantly larger in the patient group than in the control 
group (t52 = −2.66, p = .013, Cohen's d = 0.49). Thus, the 

Population Mc (SDc) Mp (SDp) t df p d

Cortex 13.21 (0.46) 12.80 (0.90) 2.24 68 .029* −0.57

CortexI 33.30 (2.97) 30.36 (7.79) 1.93 68 .058 −0.50

dSN 22.10 (2.29) 25.90 (9.96) −2.02 68 .047 0.53

iSN 15.99 (8.46) 33.55 (10.79) −7.27 68 <.001* 1.81

GPe 34.84 (4.56) 29.28 (6.07) 4.15 68 <.001* −1.04

GPi 36.28 (1.21) 34.71 (2.86) 2.77 68 .007* −0.71

STN 27.95 (2.36) 29.02 (6.73) −0.83 68 .412 0.21

Thalamus 18.50 (4.05) 12.60 (6.87) 4.13 68 <.001* −1.05

Note: Mc/SDc are the means/standard deviations of the mean firing rates at rest of all models of the control 
group. Mp/SDp are the means/standard deviations of the mean firing rates at rest of all models of the patient 
group. A two-tailed t-test for independent samples was made to compare these two samples. A * indicates 
significance after FDR correction for a significance level of α = 0.05.

T A B L E  6   The mean resting firing rates

F I G U R E  4   The relative changes of the mean firing rates and 
connectivity strengths. The numbers below each region name represent 
the relative change of the mean firing rate from the control group 
to the patient group. The relative change in connectivity strength is 
represented for each connection by the line thickness and color. The 
line color shows the direction of the changes. Dark gray indicate 
positive changes (increase of connectivity strength), light gray negative 
changes (decrease of connectivity strength). The line thickness shows 
the amount of the relative change, the thicker the more the connectivity 
strength changed. A black border around connections or regions 
indicates a significant difference in the mean firing rate at rest or mean 
connectivity strength between the control and patient group

T A B L E  7   The coefficients of variation of the mean firing rates or 
connectivity strengths of the components of the direct pathway for the 
control group (CVC) and the Parkinsonian group (CVP)

Region/connection CVC CVP ΔCV

SD1 0.10 0.38 0.28

dSN-dSN 0.19 0.45 0.26

Cortex-dSN 0.22 0.48 0.26

dSN-GPi 0.67 0.55 −0.12

M 0.30 0.47 0.17

Note: ΔCV shows the change from the control to the Parkinsonian group.

T A B L E  8   The coefficients of variation of the mean firing rates or 
connectivity strengths of the components of the indirect pathway for 
the control group (CVC) and the Parkinsonian group (CVP)

Region/connection CVC CVP ΔCV

GPe 0.13 0.21 0.08

STN 0.08 0.23 0.15

iSN 0.53 0.32 −0.21

GPe-GPe 0.30 0.26 −0.04

iSN-iSN 0.17 0.31 0.15

Cortex-iSN 0.55 0.33 −0.21

GPe-GPi 0.28 0.38 0.10

STN-GPi 0.18 0.42 0.24

iSN-GPe 0.28 0.45 0.17

GPe-STN 0.37 0.46 0.10

M 0.29 0.34 0.05

Note: ΔCV shows the change from the control to the Parkinsonian group.
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models of the patient group were more heterogeneous. To 
investigate the heterogeneity of the different pathways, we 
calculated the mean CV values for each pathway from all its 
components (shown in Tables 7,  8 and 9). All pathways were 
more heterogeneous in the patient group. The indirect path-
way had a mean ΔCV of 0.05 and thus the smallest increase 
of heterogeneity. The direct pathway with a mean CV value 
of 0.47 was the most heterogeneous pathway in the patient 
group models. The cortex–iSN connection and the iSN rate 
were more homogeneous instead of more heterogeneous in 
the patient group; thus, the increased activity of iSN cells was 
very common in the Parkinsonian models.

3.3  |  Sensitivity analysis

In the sensitivity analysis, we obtained the loss values calcu-
lated from the differences between the functional connectivi-
ties of controls/PD patients and the functional connectivities 
of the corresponding fitted models (see Equations 4 and 5) 
for different parameter variations in the fitted models. For 
each parameter, which was varied, we calculated the relative 
change in the loss depending on the change of the parameter 
value. This was done for each of the 70 models. 90% of all 
loss changes over all models and parameter deviations were 
smaller than ±16%. They ranged from −43% to +363%. For 
each parameter, we calculated the standard deviation of the 
corresponding loss values. The loss values of the two param-
eters with the highest standard deviation (SDcortex n1 = 0.64, 
SDthalamus n1  =  0.59) and the two parameters with the low-
est standard deviations (SDSTN I = 0.05, SDthalamus a = 0.05) 
are shown in Figure 6. For cortex n1 and thalamus n1, the 
loss increased on average with increasing parameter devia-
tion, but in some models, there was almost no change or even 
a reduction of the loss. Positive and negative parameter de-
viations did not have exactly the same effect but if the loss 
changed on average, it increased for both positive and nega-
tive parameter deviations. Thus, to indicate how sensitive 
the loss is to each individual parameter, we fitted a linear 
regression model without an intercept to predict the relative 
loss changes of all models using the absolute values of the 
relative parameter deviations. The slope coefficient obtained 

for each parameter indicated by what percentage the average 
loss of the models changed due to a 1% parameter deviation. 

T A B L E  9   The coefficients of variation of the mean firing rates or 
connectivity strengths of the components of the hyperdirect pathway 
for the control group (CVC) and the Parkinsonian group (CVP)

Region/connection CVC CVP ΔCV

STN 0.08 0.23 0.15

Cortex-STN 0.19 0.38 0.19

STN-GPi 0.18 0.42 0.24

M 0.15 0.34 0.19

Note: ΔCV shows the change from the control to the Parkinsonian group.

T A B L E  1 0   The coefficients of variation of the mean firing rates 
or connectivity strengths of the components which do not belong 
to one of the three pathways for the control group (CVC) and the 
Parkinsonian group (CVP)

Region/connection CVC CVP ΔCV

Cortex 0.03 0.07 0.04

CortexI 0.09 0.26 0.17

Thalamus 0.22 0.55 0.33

CortexI-Cortex 0.25 0.27 0.02

STN-GPe 0.17 0.32 0.15

CortexI-CortexI 0.20 0.33 0.13

Cortex-CortexI 0.13 0.35 0.23

GPi-Thalamus 0.42 0.36 −0.06

GPi-GPi 0.17 0.45 0.27

Thalamus-iSN 0.85 0.55 −0.30

Thalamus-dSN 0.69 0.59 −0.10

M 0.29 0.37 0.08

Note: ΔCV shows the change from the control to the Parkinsonian group.

F I G U R E  5   Differences in CV values. The figure shows the 
absolute changes in CV values for each connectivity strength and the 
mean firing rate of the populations. The numbers below each region 
name represent the absolute change of the CV value of the mean firing 
rate from the control group to the patient group. The absolute change 
in the CV values of the connectivity strengths is represented for each 
connection by the line thickness and color. The line color shows 
the direction of the changes. Dark gray are increases, light gray are 
decreases. The line thickness shows the amount of the relative change, 
the thicker the more the CV value changed
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The slope coefficients for all the parameters are shown in 
Figure 7. They ranged from 0.12 to 23.61 with a median of 
0.19. The median indicated that most slope coefficients were 
quite low. Regarding the different neuron populations, pa-
rameter deviations in the cortex and thalamus population in 
particular had a strong influence on the loss. This is probably 
because the cortex drives the entire model and the thalamus 
has a very similar influence through its feedback connections 
to the striatum. In terms of the various parameters, n0, n1 and 
n2, which were specified by (Izhikevich, 2003), clearly had 
the strongest effect. These are the parameters of the quadratic 
membrane potential equation, which therefore have a direct 
influence on the activity of the neurons.

4  |   DISCUSSION

We have used a primarily data-driven approach to gener-
ate changes related to PD in a subject-specific basal gan-
glia computational model, based on the assumption that 
Parkinsonian and control models differ in their functional 
connectivity strengths. By tuning the connection strength and 
synapse density of each connection in our model to match 
the functional connectivity obtained from the model with the 
functional connectivity of individual control subjects and 

PD patients, we obtained individual basal ganglia models of 
healthy controls and PD patients. This allowed us to compare 
these two groups of models in terms of individual connection 
strengths and mean firing rates at rest.

Many computational studies already investigated PD with 
basal ganglia models (reviews, Humphries et al., 2018; Schroll 
& Hamker, 2016). However, these models were not fit to data 
of healthy and PD subjects (Holgado, Terry, & Bogacz, 2010; 
Kumar, Cardanobile, Rotter, & Aertsen,  2011; Lindahl & 
Kotaleski,  2016; Mandali, Rengaswamy, Chakravarthy, & 
Moustafa, 2015; McCarthy et al., 2011; Terman, Rubin, Yew, 
& Wilson, 2002). To compare healthy and PD states in basal 
ganglia models, the most common approach so far is to imple-
ment the modulatory effects of DA into the model, where DA 
is either an external variable (Guthrie, Myers, & Gluck, 2009; 
Humphries et al., 2006; Leblois, Boraud, Meissner, Bergman, 
& Hansel, 2006; Lindahl & Kotaleski, 2016) or implemented 
within the model by neurons representing the SNc activity 
(Frank, 2005; Schroll, Vitay, & Hamker, 2014). States of DA 
then differentially affect the activity of striatal spiny pro-
jection neurons or the degree of long-term potentiation or 
depression. Thus, the predictions made by these neuro-com-
putational models with respect to how PD changes processing 
in the basal ganglia critically depend on assumptions about 
the effects of DA in the basal ganglia built into the models.

F I G U R E  6   Relative loss changes 
depending on relative deviations of four 
example parameters, cortex n1, cortex 
n2, striatum n1 and striatum n2. Each 
observation is presented by a small circle. 
The data were collected over the 70 fitted 
models; thus, there are 70 observations 
for each parameter variation. The 33 
parameter variations ranging from −5% 
to +5% in 0.3125% increments. The black 
line indicates the mean over the 70 models. 
The plots are quite symmetrical and thus 
show that the change of the loss depends 
mainly on the absolute value of the relative 
parameter deviation. ΔLoss—absolute loss 
change of the corresponding model, Loss0—
loss value of the corresponding model with 
standard parameters from Table 1
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4.1  |  The “rate model” of PD and 
corresponding neurophysiological findings

Due to the popularity of the so-called rate model of the basal 
ganglia, particularly the version of DeLong (1990), we com-
pared the individual predictions of this rate model and our re-
sults with respect to experimental findings compiled in several 
reviews (DeLong & Wichmann, 2009; Galvan et al., 2015; 
Galvan & Wichmann,  2008; Lee & Masmanidis,  2019; 
McGregor & Nelson, 2019; Obeso & Lanciego, 2011; Obeso 
et al., 2000; Wichmann & Delong, 2002).

The rate model suggests that DA activates the dSN cells 
of the direct pathway and inhibits the iSN cells of the indirect 

pathway. Due to the reduction of DA in PD, iSN cells be-
come more active which leads to a stronger inhibition of GPe, 
whereupon the STN is disinhibited. The hyperactive STN 
then causes a stronger stimulation of the GPi. In addition, the 
DA loss reduces the activity of the dSN cells, whereby the 
GPi is additionally disinhibited. Convergingly, this leads to a 
hyperactive GPi, resulting in a strong inhibition of the thala-
mus, whereby the cortex receives less excitatory input from 
the thalamus. The inhibited thalamus and the less excited or 
less responsive cortex are proposed to result in bradykinesia.

Although we have not implemented modulation by DA 
or DA changes in our models, similarities between the re-
sults of our study and the predictions of the rate model are 
apparent. The most consistent change that occurred in the 
Parkinsonian models was the stronger cortex–iSN connec-
tion and higher iSN firing rate. Despite some variability in 
experimental observations, more active iSN cells seem to be 
a very consistent finding in experimental studies. Increased 
firing rates were measured in PD animal models (Kita & 
Kita,  2011; Mallet, Ballion, Le Moine, & Gonon,  2006; 
Sharott, Vinciati, Nakamura, & Magill,  2017), and further 
findings on synapse density (Day et al., 2006), increased me-
tabolism in GPe (Crossman, Mitchell, & Sambrook,  1985; 
Mitchell, Cross, Sambrook, & Crossman, 1986; Schwartzman 
& Alexander,  1985) and increased GABA levels in GPe 
(Bianchi, Galeffi, Bolam, & Della Corte, 2003; Robertson, 
Graham, Sambrook, & Crossman, 1991) indicate increased 
activity of the iSN cells. Only a few studies did not reproduce 
an increased iSN firing rate in PD (Ketzef et al., 2017; Ryan, 
Bair-Marshall, & Nelson, 2018).

Further, our model predicts a lower firing rate in GPe. 
Also, these changes were reported in many animal model 
studies (Boraud, Bezard, Guehl, Bioulac, & Gross,  1998; 
Filion & Tremblay, 1991; Miller & DeLong, 1987, 1988; Pan 
& Walters, 1988; Schwartzman & Alexander, 1985; Soares 
et al., 2004) but a few reports argue against it, like Bezard, 
Boraud, Bioulac, and Gross (1999), which observed an in-
crease in STN but no decrease in GPe firing rate.

Our Parkinsonian models showed lower firing rates 
in the thalamus, as supported by many previous findings 
(Kammermeier, Pittard, Hamada, & Wichmann,  2016; 
Molnar, Pilliar, Lozano, & Dostrovsky,  2005; Ni, Gao, 
Benabid, & Benazzouz, 2000; Schneider & Rothblat, 1996; 
Vitek, Ashe, & Kaneoke, 1994). However, the findings for 
the thalamus are quite inconsistent (Galvan et al., 2015) in-
cluding findings of no rate change (Pessiglione et al., 2005) 
or even increased rates (Bosch-Bouju, Smither, Hyland, & 
Parr-Brownlie, 2014). Concurrently, the thalamus in our PD 
models had the most heterogeneous mean firing rates. In fact, 
some PD patients’ models showed mean thalamus firing rates 
above 20 Hz, which is higher than in some controls’ models. 
Therefore, our results also suggest that some PD patients may 
have an increased rather than a decreased thalamus firing rate.

F I G U R E  7   Slope coefficients of the linear regression model 
predicting the relative loss changes using the absolute values of the 
relative parameter deviations. The data were collected over the 70 
fitted models and 33 parameter variations ranging from −5% to +5% in 
0.3125% increments for each parameter. The slope coefficient of each 
parameter is shown by the width of the vertical bars. The background 
colors indicate the corresponding population of the parameters
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A further consistency of our results with the predictions 
of the rate model is the decreased firing rates of the cortex, 
which were previously demonstrated in studies on mon-
keys (Pasquereau, DeLong, & Turner,  2016; Pasquereau 
& Turner, 2011). According to the rate model, the reduced 
activity of the cortex should result from the excessively in-
hibited thalamus. This cannot be the case in our model as 
we closed the loop via the thalamus. As we have drastically 
simplified the cortex in our model and have neglected corti-
cal inputs like cortex–thalamus loops, it is unlikely that our 
model plausibly explains why the cortex has a lower activity. 
Furthermore, the difference in the cortical firing rate is rela-
tively small in our models.

In some points, our findings contradict estimations of 
the rate model. First, the activity of the dSN in our PD mod-
els is higher than the rate model would predict. We do not 
observe a significant decrease in the PD group models but 
even the opposite tendency. However, there are some sparse 
findings in the literature that describe increased dSN firing 
rates in PD (Kita & Kita,  2011; Mallet et  al.,  2006; Ryan 
et al., 2018) albeit they are less frequent than findings of dSN 
decreased rates. Some studies show that the metabolism in 
the GPi is increased (Crossman et al., 1985; Schwartzman & 
Alexander, 1985). This is usually understood to be resulting 
from increased input from the hyperactive STN. However, 
the increased metabolism could also be a consequence of in-
creased afferent synaptic activity caused by the dSN cells. 
In addition, our results show that cortex–dSN connectivity 
strength, dSN firing rate and dSN–GPi connectivity strength 
are among the most heterogeneous effects in our Parkinsonian 
models.

Second, contradicting predictions of the rate model our 
findings indicate a less active GPi in PD. Although strongly 
debated, GPi overactivity predicted by the rate model has 
been partially supported by some studies (Boraud et al., 1998; 
Filion & Tremblay,  1991; Miller & DeLong,  1987, 1988; 
Soares et al., 2004; Wichmann et al., 1999). Findings on in-
creased metabolism in the thalamus also suggest an increased 
inhibitory input from the GPi (Mitchell et al., 1989; Rolland 
et  al.,  2007). However, these findings could also speak for 
a stronger GPi–thalamus connection, as was the case in our 
Parkinsonian models. Nevertheless, the findings of previous 
studies do not indicate that the GPi is less active in PD.

Finally, the STN should be overactive according to the 
rate model. STN overactivity was found in several studies 
(Benazzouz et  al., 2002; Bergman, Wichmann, Karmon, & 
DeLong,  1994; Bezard et  al.,  1999; Hassani, Mouroux, & 
Feger, 1996; Kreiss, Mastropietro, Rawji, & Walters, 1997; 
Miller & DeLong, 1987; Soares et al., 2004; Vila et al., 2000). 
In our Parkinsonian models, the STN only showed a tendency 
toward hyperactivity, but no significant effect. Increased me-
tabolism in GPe and GPi also indicate an overactive STN 
(Crossman et al., 1985; Mitchell et al., 1986; Schwartzman 

& Alexander, 1985), but also unaltered STN firing rates in 
Parkinsonian rodents have been reported (Delaville, McCoy, 
Gerber, Cruz, & Walters, 2015).

In summary, our data-driven approach illustrates PD 
changes similar to predictions of the rate model, which are in 
coherence with many experimental findings. This suggests a 
certain plausibility of the rate changes in our models, which 
result exclusively from fitting functional connectivity of pa-
tients and healthy controls. However, there are also some 
inconsistencies in our data with the rate model predictions, 
especially the lower firing rates in GPi and the lack of in-
creased firing rates in STN.

The data to which our models were fitted were collected 
during active dopaminergic medication of the PD patients 
(Horn et al., 2019). This medication may have affected basal 
ganglia firing rates, which should be considered when inter-
preting our results. Levy et al. (2001) showed that DA agonist 
apomorphine administration leads to a generally lower GPi 
rate and a lower STN rate during movement in PD patients. 
This could be a reason why we did not find an increased STN 
or GPi rate in our models. In addition, the DBS electrodes 
implanted in the patients despite being switched off probably 
caused artifacts in the BOLD signal, especially in the STN 
signal, which reduces the validity of our results about the 
STN.

4.2  |  Firing rates to explain PD

So far, we have only compared findings, which suggest 
or show certain neuronal activity changes with our re-
sults and the rate model. Of course, the rate model does 
not only describe the rates themselves, but also tries to ex-
plain PD symptoms by changes in the rates. Meanwhile, it 
has been shown that the predictions the rate model makes 
about the effects of certain rate changes on motor func-
tion cannot be replicated very consistently (DeLong & 
Wichmann,  2009; Galvan & Wichmann,  2008; Obeso & 
Lanciego,  2011; Wichmann & Delong,  2002) and other 
features such as firing pattern with prolonged bursts and 
pauses are most likely more important as a simple output 
rate (Hutchison et al., 1994; Levy, Hutchison, Lozano, & 
Dostrovsky, 2000; Molnar et al., 2005; Vitek et al., 1999; 
Wichmann & Soares,  2006). Moreover, invasive record-
ings in humans via DBS electrodes over the last two dec-
ades have shown that abnormal oscillatory activity in the 
cortico-BG network is related to motor symptoms such as 
increased beta band activity in PD bradykinesia and rigid-
ity (Kühn & Volkmann, 2017).

We, therefore, do not want to draw any direct conclu-
sions about the symptoms in PD with our findings on the 
rate changes. Rather, our study should be seen as a proof 
of concept, in that we obtained plausible rate changes, in 
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accordance with many experimental findings, solely from the 
functional connectivity data of controls and patients.

4.3  |  Limitations

Our approach is complementary to previous neuro-compu-
tational accounts to study the effects of PD in the basal 
ganglia. Most importantly, it directly relies on data from 
both, control subjects and PD patients, it requires no spe-
cific assumptions of how DA deficiency associated with 
PD changes processing in the model and it leads to subject-
specific neuro-computational models at the level of spiking 
activity. However, we shall also mention the limitations of 
the present design. Although we are able to bridge scales 
from BOLD data to neural spiking dynamics, one has to be 
aware that the free model parameters are tuned to match 
BOLD correlation data. Thus, no direct access to firing 
rates or local field potentials exists that could further con-
strain the model. Given BOLD data, the model is already 
fairly complex, but certainly far away from the true biolog-
ical detail, as several neuron types and their connectivity 
are not included. An important prerequisite for the validity 
of our results is that the differences in functional connec-
tivity between patients and controls were caused by PD. 
This is not completely fulfilled in our data. Even though 
the subjects were age-matched, the data were collected in 
two different laboratories. The patients' data were scanned 
at 3 T, and the controls' data were scanned at 1.5 T. In ad-
dition, the patients received a DBS electrode which may 
cause artifacts in the BOLD signal even when switched off. 
Besides the free parameters obtained by the optimization 
process, our model has a large number of fixed parameters 
that were not optimized by the optimization process. Our 
sensitivity analysis shows that some of these parameters 
have a strong influence on the losses of the models. Thus, 
changes in these parameters could also cause changes in 
our results. However, it is important to remember that these 
parameters should not be arbitrarily different from ours. 
Most of our parameters were chosen based on previous 
studies (Humphries, Lepora, et al., 2009; Izhikevich, 2004; 
Thibeault & Srinivasa,  2013) to mimic the firing proper-
ties of the respective neurons based on physiological data. 
The optimal case would be to have access to the specific 
parameters for each individual patient and control subject, 
but this would require single-cell recordings for all the dif-
ferent nuclei for each patient and control subject, which 
would not be feasible. Thus, we took a compromise and 
combined general assumptions (e.g., the neuron models/
firing properties) with easily accessible individual data 
(like MRI) to obtain individual models. Despite these lim-
itations, we found a good match to existing data as out-
lined above, although present data are also quite variable. 

However, not each prediction of the model should be inter-
preted literally. While the increase in iSN activity is very 
consistent among the subject-specific models of PD and 
also observed in recent studies (Kita & Kita, 2011; Mallet 
et al., 2006; Sharott et al., 2017), the massive increase in 
iSN firing rate is likely an overestimation. Thus, despite 
the promising observations, future studies should explore 
how to add additional constraints to the model or add more 
data to the optimization procedure. Our approach used in 
this study could be further extended with more complex 
models, albeit there is a limitation in the number of param-
eters being fit. Models that would replicate the neuronal 
mechanisms relevant for PD symptoms can then also be 
used to investigate treatment options for PD in more detail. 
As the method used in this study provides models of both, 
healthy and Parkinsonian states, it offers a promising envi-
ronment to systematically search for treatments that bring 
the Parkinsonian models closer to the healthy ones. In ad-
dition, the method provides individual models of patients, 
a potential that has not been exploited in our present study. 
With individual models, tailored PD treatments could be 
investigated, comparable to the “virtual epileptic patient” 
(Jirsa et  al.,  2017). This might help to plan and improve 
treatment efficacy for the heterogeneous PD phenotypes.

5  |   CONCLUSION

The approach to fit functional connectivity data with a spik-
ing neuro-computational basal ganglia model and thus infer-
ring firing rates and connectivity strengths has proven to be 
quite successful. We have indeed found many similarities 
with the rate model of the basal ganglia and corresponding 
recent physiological findings. Our results show quite mean-
ingful changes in firing rates in the basal ganglia, associated 
with PD. These changes emerged only due to differences 
in the functional connectivity of PD patients and controls 
and were thus obtained without implementing effects of DA 
and DA changes associated with PD in the models. As fir-
ing rates alone have become somewhat outdated in terms of 
explaining PD symptoms, in the future, our approach could 
be further developed to include effects of synchrony, oscil-
lations and bursts in PD, by using additional data in the fit-
ting procedure. In addition, our study is a confident first step 
toward obtaining subject-specific models from non-invasive 
imaging data of PD patients and healthy controls that could 
be useful for tailored treatments of PD.
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