000888454 001__ 888454
000888454 005__ 20240313103130.0
000888454 0247_ $$2doi$$a10.3389/frai.2020.00023
000888454 0247_ $$2Handle$$a2128/28910
000888454 0247_ $$2altmetric$$aaltmetric:80259923
000888454 0247_ $$2pmid$$apmid:33733142
000888454 0247_ $$2WOS$$aWOS:000751673300023
000888454 037__ $$aFZJ-2020-04922
000888454 082__ $$a004
000888454 1001_ $$0P:(DE-HGF)0$$aMüller, Tamara T.$$b0$$eCorresponding author
000888454 245__ $$aPECLIDES Neuro: A Personalisable Clinical Decision Support System for Neurological Diseases
000888454 260__ $$aLausanne$$bFrontiers Media$$c2020
000888454 3367_ $$2DRIVER$$aarticle
000888454 3367_ $$2DataCite$$aOutput Types/Journal article
000888454 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636121335_4632
000888454 3367_ $$2BibTeX$$aARTICLE
000888454 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888454 3367_ $$00$$2EndNote$$aJournal Article
000888454 520__ $$aNeurodegenerative diseases such as Alzheimer's and Parkinson's impact millions of people worldwide. Early diagnosis has proven to greatly increase the chances of slowing down the diseases' progression. Correct diagnosis often relies on the analysis of large amounts of patient data, and thus lends itself well to support from machine learning algorithms, which are able to learn from past diagnosis and see clearly through the complex interactions of a patient's symptoms and data. Unfortunately, many contemporary machine learning techniques fail to reveal details about how they reach their conclusions, a property considered fundamental when providing a diagnosis. Here we introduce our Personalisable Clinical Decision Support System (PECLIDES), an algorithmic process formulated to address this specific fault in diagnosis detection. PECLIDES provides a clear insight into the decision-making process leading to a diagnosis, making it a gray box model. Our algorithm enriches the fundamental work of Masheyekhi and Gras in data integration, personal medicine, usability, visualization, and interactivity.Our decision support system is an operation of translational medicine. It is based on random forests, is personalisable and allows a clear insight into the decision-making process. A well-structured rule set is created and every rule of the decision-making process can be observed by the user (physician). Furthermore, the user has an impact on the creation of the final rule set and the algorithm allows the comparison of different diseases as well as regional differences in the same disease. The algorithm is applicable to various decision problems. In this paper we will evaluate it on diagnosing neurological diseases and therefore refer to the algorithm as PECLIDES Neuro1.
000888454 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888454 588__ $$aDataset connected to CrossRef
000888454 7001_ $$0P:(DE-HGF)0$$aLio, Pietro$$b1
000888454 773__ $$0PERI:(DE-600)2957496-1$$a10.3389/frai.2020.00023$$gVol. 3, p. 23$$p23$$tFrontiers in artificial intelligence$$v3$$x2624-8212$$y2020
000888454 8564_ $$uhttps://juser.fz-juelich.de/record/888454/files/frai-03-00023.pdf$$yOpenAccess
000888454 909CO $$ooai:juser.fz-juelich.de:888454$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000888454 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888454 9141_ $$y2021
000888454 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888454 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-25
000888454 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-25
000888454 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888454 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-25
000888454 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25
000888454 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25
000888454 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000888454 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000888454 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000888454 9801_ $$aFullTexts
000888454 980__ $$ajournal
000888454 980__ $$aVDB
000888454 980__ $$aUNRESTRICTED
000888454 980__ $$aI:(DE-Juel1)INM-6-20090406
000888454 980__ $$aI:(DE-Juel1)IAS-6-20130828
000888454 980__ $$aI:(DE-Juel1)INM-10-20170113
000888454 981__ $$aI:(DE-Juel1)IAS-6-20130828