000888455 001__ 888455
000888455 005__ 20240712112836.0
000888455 0247_ $$2doi$$a10.1002/cssc.202002359
000888455 0247_ $$2ISSN$$a1864-5631
000888455 0247_ $$2ISSN$$a1864-564X
000888455 0247_ $$2Handle$$a2128/27961
000888455 0247_ $$2altmetric$$aaltmetric:95819291
000888455 0247_ $$2pmid$$a33236522
000888455 0247_ $$2WOS$$aWOS:000596585900001
000888455 037__ $$aFZJ-2020-04923
000888455 082__ $$a540
000888455 1001_ $$0P:(DE-HGF)0$$aZhu, Guangqi$$b0
000888455 245__ $$aReconstructing 1D Fe Single‐atom Catalytic Structure on 2D Graphene film for High‐efficiency Oxygen Reduction Reaction
000888455 260__ $$aWeinheim$$bWiley-VCH$$c2021
000888455 3367_ $$2DRIVER$$aarticle
000888455 3367_ $$2DataCite$$aOutput Types/Journal article
000888455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623863731_4268
000888455 3367_ $$2BibTeX$$aARTICLE
000888455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888455 3367_ $$00$$2EndNote$$aJournal Article
000888455 520__ $$aThe ordinary intrinsic activity and disordered distribution of metal sites in zero/one-dimensional (0D/1D) single-atom catalysts (SACs) lead to inferior catalytic efficiency and short-term endurance in the oxygen reduction reaction (ORR), which restricts the large-scale application of hydrogen−oxygen fuel cells and metal−air batteries. To improve the activity of SACs, a mild synthesis method was chosen to conjugate 1D Fe SACs with 2D graphene film (Fe SAC@G) that realized a composite structure with well-ordered atomic-Fe coordination configuration. The product exhibits outstanding ORR electrocatalytic efficiency and stability in 0.1 M KOH aqueous solution. DFT-D computational results manifest the intrinsic ORR activity of Fe SAC@G originated from the newly-formed FeN4−O−FeN4 bridge structure with moderate adsorption ability towards ORR intermediates. These findings provide new ways for designing SACs with high activity and long-term stability.
000888455 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000888455 588__ $$aDataset connected to CrossRef
000888455 7001_ $$0P:(DE-HGF)0$$aQi, Yanling$$b1
000888455 7001_ $$0P:(DE-HGF)0$$aLiu, Fan$$b2
000888455 7001_ $$0P:(DE-HGF)0$$aMa, Shenqian$$b3
000888455 7001_ $$0P:(DE-HGF)0$$aXiang, Guolei$$b4
000888455 7001_ $$0P:(DE-HGF)0$$aJin, Fengmin$$b5
000888455 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b6$$ufzj
000888455 7001_ $$0P:(DE-HGF)0$$aWei, Wang$$b7$$eCorresponding author
000888455 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202002359$$gp. cssc.202002359$$n3$$p866-875$$tChemSusChem$$v14$$x1864-564X$$y2021
000888455 8564_ $$uhttps://juser.fz-juelich.de/record/888455/files/cssc.202002359.pdf$$yRestricted
000888455 8564_ $$uhttps://juser.fz-juelich.de/record/888455/files/3%20Not%20open%20access%20Manuscript.pdf$$yPublished on 2020-11-24. Available in OpenAccess from 2021-11-24.
000888455 909CO $$ooai:juser.fz-juelich.de:888455$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b6$$kFZJ
000888455 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000888455 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000888455 9141_ $$y2021
000888455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2018$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2018$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-03$$wger
000888455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888455 920__ $$lyes
000888455 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000888455 9801_ $$aFullTexts
000888455 980__ $$ajournal
000888455 980__ $$aVDB
000888455 980__ $$aUNRESTRICTED
000888455 980__ $$aI:(DE-Juel1)IEK-9-20110218
000888455 981__ $$aI:(DE-Juel1)IET-1-20110218