000888457 001__ 888457
000888457 005__ 20240712112836.0
000888457 0247_ $$2doi$$a10.3390/pr9010109
000888457 0247_ $$2Handle$$a2128/26911
000888457 0247_ $$2WOS$$aWOS:000610751900001
000888457 037__ $$aFZJ-2020-04925
000888457 082__ $$a570
000888457 1001_ $$0P:(DE-HGF)0$$aYan, Ning$$b0
000888457 245__ $$aMorphology and Structure Controls of Single-atom Fe-N-C Catalysts Synthesized Using FePc Powders as the Precursor
000888457 260__ $$aBasel$$bMDPI$$c2021
000888457 3367_ $$2DRIVER$$aarticle
000888457 3367_ $$2DataCite$$aOutput Types/Journal article
000888457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639729427_18984
000888457 3367_ $$2BibTeX$$aARTICLE
000888457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888457 3367_ $$00$$2EndNote$$aJournal Article
000888457 520__ $$aUnderstanding the origin of the high electrocatalytic activity of Fe–N–C electrocatalysts for oxygen reduction reaction is critical but still challenging for developing efficient sustainable nonprecious metal catalysts used in fuel cells. Although there are plenty of papers concerning the morphology on the surface Fe–N–C catalysts, there is very little work discussing how temperature and pressure control the growth of nanoparticles. In our lab, a unique organic vapor deposition technology was developed to investigate the effect of the temperature and pressure on catalysts. The results indicated that synthesized catalysts exhibited three kinds of morphology—nanorods, nanofibers, and nanogranules—corresponding to different synthesis processes. The growth of the crystal is the root cause of the difference in the surface morphology of the catalyst, which can reasonably explain the effect of the temperature and pressure. The oxygen reduction reaction current densities of the different catalysts at potential 0.88 V increased in the following order: FePc (1.04 mA/cm2) < Pt/C catalyst (1.54 mA/cm2) ≈ Fe–N–C-f catalyst (1.64 mA/cm2) < Fe–N–C-g catalyst (2.12 mA/cm2) < Fe–N–C-r catalyst (2.35 mA/cm2). By changing the morphology of the catalyst surface, this study proved that the higher performance of the catalysts can be obtained
000888457 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000888457 588__ $$aDataset connected to CrossRef
000888457 7001_ $$0P:(DE-HGF)0$$aLiu, Fan$$b1
000888457 7001_ $$0P:(DE-HGF)0$$aGuangqi, Zhu$$b2
000888457 7001_ $$0P:(DE-HGF)0$$aLuxia, Bu$$b3
000888457 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b4$$ufzj
000888457 7001_ $$0P:(DE-HGF)0$$aWang, Wei$$b5$$eCorresponding author
000888457 773__ $$0PERI:(DE-600)2720994-5$$a10.3390/pr9010109$$gVol. 9, no. 1, p. 109 -$$n1$$p109 -$$tProcesses$$v9$$x2227-9717$$y2021
000888457 8564_ $$uhttps://juser.fz-juelich.de/record/888457/files/processes-09-00109-v4.pdf$$yOpenAccess
000888457 909CO $$ooai:juser.fz-juelich.de:888457$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b4$$kFZJ
000888457 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000888457 9141_ $$y2021
000888457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-27
000888457 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888457 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROCESSES : 2018$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888457 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000888457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000888457 920__ $$lyes
000888457 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000888457 9801_ $$aFullTexts
000888457 980__ $$ajournal
000888457 980__ $$aVDB
000888457 980__ $$aI:(DE-Juel1)IEK-9-20110218
000888457 980__ $$aUNRESTRICTED
000888457 981__ $$aI:(DE-Juel1)IET-1-20110218