Home > Publications database > Morphology and Structure Controls of Single-atom Fe-N-C Catalysts Synthesized Using FePc Powders as the Precursor > print |
001 | 888457 | ||
005 | 20240712112836.0 | ||
024 | 7 | _ | |a 10.3390/pr9010109 |2 doi |
024 | 7 | _ | |a 2128/26911 |2 Handle |
024 | 7 | _ | |a WOS:000610751900001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04925 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Yan, Ning |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Morphology and Structure Controls of Single-atom Fe-N-C Catalysts Synthesized Using FePc Powders as the Precursor |
260 | _ | _ | |a Basel |c 2021 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639729427_18984 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the origin of the high electrocatalytic activity of Fe–N–C electrocatalysts for oxygen reduction reaction is critical but still challenging for developing efficient sustainable nonprecious metal catalysts used in fuel cells. Although there are plenty of papers concerning the morphology on the surface Fe–N–C catalysts, there is very little work discussing how temperature and pressure control the growth of nanoparticles. In our lab, a unique organic vapor deposition technology was developed to investigate the effect of the temperature and pressure on catalysts. The results indicated that synthesized catalysts exhibited three kinds of morphology—nanorods, nanofibers, and nanogranules—corresponding to different synthesis processes. The growth of the crystal is the root cause of the difference in the surface morphology of the catalyst, which can reasonably explain the effect of the temperature and pressure. The oxygen reduction reaction current densities of the different catalysts at potential 0.88 V increased in the following order: FePc (1.04 mA/cm2) < Pt/C catalyst (1.54 mA/cm2) ≈ Fe–N–C-f catalyst (1.64 mA/cm2) < Fe–N–C-g catalyst (2.12 mA/cm2) < Fe–N–C-r catalyst (2.35 mA/cm2). By changing the morphology of the catalyst surface, this study proved that the higher performance of the catalysts can be obtained |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Liu, Fan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Guangqi, Zhu |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Luxia, Bu |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Zigeng |0 P:(DE-Juel1)172733 |b 4 |u fzj |
700 | 1 | _ | |a Wang, Wei |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.3390/pr9010109 |g Vol. 9, no. 1, p. 109 - |0 PERI:(DE-600)2720994-5 |n 1 |p 109 - |t Processes |v 9 |y 2021 |x 2227-9717 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888457/files/processes-09-00109-v4.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888457 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172733 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PROCESSES : 2018 |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-08-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-08-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|