000888458 001__ 888458
000888458 005__ 20240712112840.0
000888458 0247_ $$2doi$$a10.1039/D0SC06601J
000888458 0247_ $$2ISSN$$a2041-6520
000888458 0247_ $$2ISSN$$a2041-6539
000888458 0247_ $$2Handle$$a2128/28146
000888458 0247_ $$2altmetric$$aaltmetric:100201800
000888458 0247_ $$2pmid$$a34163705
000888458 0247_ $$2WOS$$aWOS:000635768300018
000888458 037__ $$aFZJ-2020-04926
000888458 082__ $$a540
000888458 1001_ $$0P:(DE-HGF)0$$aShenqian, Ma$$b0
000888458 245__ $$aA new type of noncovalent surface–π stacking interaction occurring on peroxide-modified titania nanosheets driven by vertical π-state polarization
000888458 260__ $$aCambridge$$bRSC$$c2021
000888458 3367_ $$2DRIVER$$aarticle
000888458 3367_ $$2DataCite$$aOutput Types/Journal article
000888458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639736282_17940
000888458 3367_ $$2BibTeX$$aARTICLE
000888458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888458 3367_ $$00$$2EndNote$$aJournal Article
000888458 520__ $$aNoncovalent π stacking of aromatic molecules is a universal form of noncovalent interactions normally occurring on planar structures (such as aromatic molecules and graphene) based on sp2-hybridized atoms. Here we reveal a new type of noncovalent surface–π stacking unusually occurring between aromatic groups and peroxide-modified titania (PMT) nanosheets, which can drive versatile aromatic adsorptions. We experimentally explore the underlying electronic-level origin by probing the perturbed changes of unoccupied Ti 3d states with near-edge X-ray absorption fine structures (NEXAFS), and find that aromatic groups can vertically attract π electrons in the surface peroxo-Ti states and increase their delocalization regions. Our discovery updates the concept of noncovalent π-stacking interactions by extending the substrates from carbon-based structures to a transition metal oxide, and presents an approach to exploit the surface chemistry of nanomaterials based on noncovalent interactions.
000888458 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000888458 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000888458 7001_ $$0P:(DE-HGF)0$$aWeixin, Zhao$$b1
000888458 7001_ $$0P:(DE-HGF)0$$aJun, Zhou$$b2
000888458 7001_ $$0P:(DE-HGF)0$$aYang-gang, Wang$$b3
000888458 7001_ $$0P:(DE-HGF)0$$aJiaou, Wang$$b4
000888458 7001_ $$0P:(DE-HGF)0$$aShengqi, Chu$$b5
000888458 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b6
000888458 7001_ $$0P:(DE-HGF)0$$aLeyu, Wang$$b7
000888458 7001_ $$0P:(DE-HGF)0$$aGuolei, Xiang$$b8$$eCorresponding author
000888458 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/D0SC06601J$$gVol. 12, no. 12, p. 4411 - 4417$$n12$$p4411 - 4417$$tChemical science$$v12$$x2041-6539$$y2021
000888458 8564_ $$uhttps://juser.fz-juelich.de/record/888458/files/d0sc06601j.pdf$$yOpenAccess
000888458 909CO $$ooai:juser.fz-juelich.de:888458$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b6$$kFZJ
000888458 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000888458 9141_ $$y2021
000888458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2019$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000888458 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000888458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2019$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888458 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000888458 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000888458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000888458 920__ $$lyes
000888458 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000888458 9801_ $$aFullTexts
000888458 980__ $$ajournal
000888458 980__ $$aVDB
000888458 980__ $$aI:(DE-Juel1)IEK-9-20110218
000888458 980__ $$aUNRESTRICTED
000888458 981__ $$aI:(DE-Juel1)IET-1-20110218