001     888463
005     20210130010941.0
024 7 _ |a 10.1038/s41535-020-00293-3
|2 doi
024 7 _ |a 2128/26376
|2 Handle
024 7 _ |a altmetric:95493108
|2 altmetric
024 7 _ |a WOS:000597293600002
|2 WOS
037 _ _ |a FZJ-2020-04931
082 _ _ |a 530
100 1 _ |a Chen, Guan-Yu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Orbital-enhanced warping effect in px,py-derived Rashba spin splitting of monatomic bismuth surface alloy
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607350107_25354
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spin-split Rashba bands have been exploited to efficiently control the spin degree of freedom of moving electrons, which possesses a great potential in frontier applications of designing spintronic devices and processing spin-based information. Given an intrinsic breaking of inversion symmetry and sizeable spin–orbit interaction, two-dimensional (2D) surface alloys formed by heavy metal elements exhibit a pronounced Rashba-type spin splitting of the surface states. Here, we have revealed the essential role of atomic orbital symmetry in the hexagonally warped Rashba spin-split surface state of the 3–√×3–√R300 BiCu2 monatomic alloy by scanning tunneling spectroscopy (STS) and density functional theory (DFT). From dI/dU spectra and calculated band structures, three hole-like Rashba-split bands hybridized from distinct orbital symmetries have been identified in the unoccupied energy region. Because of the hexagonally deformed Fermi surface, quasi-particle interference (QPI) mappings have resolved scattering channels opened from interband transitions of px,py (mj = 1/2) band. In contrast to the s,pz-derived band, the hexagonal warping is predominately accompanied by substantial out-of-plane spin polarization Sz up to 24% in the dispersion of px,py (mj = 1/2) band with an in-plane orbital symmetry.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huang, Angus
|0 0000-0002-0800-3172
|b 1
700 1 _ |a Lin, Yen-Hui
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chen, Chia-Ju
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lin, Deng-Sung
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chang, Po-Yao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jeng, Horng-Tay
|0 0000-0002-2881-3826
|b 6
|e Corresponding author
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 7
700 1 _ |a Hsu, Pin-Jui
|0 0000-0002-5704-6574
|b 8
|e Corresponding author
773 _ _ |a 10.1038/s41535-020-00293-3
|g Vol. 5, no. 1, p. 89
|0 PERI:(DE-600)2882263-8
|n 1
|p 89
|t npj quantum materials
|v 5
|y 2020
|x 2397-4648
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888463/files/2006.05024.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888463/files/s41535-020-00293-3.pdf
909 C O |o oai:juser.fz-juelich.de:888463
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130545
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21