000888464 001__ 888464
000888464 005__ 20220930130259.0
000888464 0247_ $$2doi$$a10.1371/journal.pone.0242072
000888464 0247_ $$2Handle$$a2128/26377
000888464 0247_ $$2pmid$$a33196676
000888464 0247_ $$2WOS$$aWOS:000595266800006
000888464 037__ $$aFZJ-2020-04932
000888464 082__ $$a610
000888464 1001_ $$0P:(DE-HGF)0$$aVoronin, Arthur$$b0
000888464 245__ $$aIncluding residual contact information into replica-exchange MD simulations significantly enriches native-like conformations
000888464 260__ $$aSan Francisco, California, US$$bPLOS$$c2020
000888464 3367_ $$2DRIVER$$aarticle
000888464 3367_ $$2DataCite$$aOutput Types/Journal article
000888464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607350505_23843
000888464 3367_ $$2BibTeX$$aARTICLE
000888464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888464 3367_ $$00$$2EndNote$$aJournal Article
000888464 520__ $$aProteins are complex biomolecules which perform critical tasks in living organisms. Knowledge of a protein’s structure is essential for understanding its physiological function in detail. Despite the incredible progress in experimental techniques, protein structure determination is still expensive, time-consuming, and arduous. That is why computer simulations are often used to complement or interpret experimental data. Here, we explore how in silico protein structure determination based on replica-exchange molecular dynamics (REMD) can benefit from including contact information derived from theoretical and experimental sources, such as direct coupling analysis or NMR spectroscopy. To reflect the influence from erroneous and noisy data we probe how false-positive contacts influence the simulated ensemble. Specifically, we integrate varying numbers of randomly selected native and non-native contacts and explore how such a bias can guide simulations towards the native state. We investigate the number of contacts needed for a significant enrichment of native-like conformations and show the capabilities and limitations of this method. Adhering to a threshold of approximately 75% true-positive contacts within a simulation, we obtain an ensemble with native-like conformations of high quality. We find that contact-guided REMD is capable of delivering physically reasonable models of a protein’s structure.
000888464 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888464 536__ $$0G:(DE-Juel1)hkf6_20200501$$aForschergruppe Schug (hkf6_20200501)$$chkf6_20200501$$fForschergruppe Schug$$x1
000888464 588__ $$aDataset connected to CrossRef
000888464 7001_ $$0P:(DE-HGF)0$$aWeiel, Marie$$b1
000888464 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b2$$eCorresponding author
000888464 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0242072$$gVol. 15, no. 11, p. e0242072 -$$n11$$pe0242072 -$$tPLOS ONE$$v15$$x1932-6203$$y2020
000888464 8564_ $$uhttps://juser.fz-juelich.de/record/888464/files/journal.pone.0242072.pdf$$yOpenAccess
000888464 8767_ $$8PONED-20-21156$$92020-12-02$$d2021-01-08$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-20-21156$$z1695.00 USD, Pre-Invoice vom 16.12.2020, Conformation and new balance vom 08.01.2021
000888464 909CO $$ooai:juser.fz-juelich.de:888464$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000888464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b2$$kFZJ
000888464 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888464 9141_ $$y2020
000888464 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2018$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888464 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000888464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000888464 920__ $$lyes
000888464 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000888464 9801_ $$aFullTexts
000888464 980__ $$ajournal
000888464 980__ $$aVDB
000888464 980__ $$aUNRESTRICTED
000888464 980__ $$aI:(DE-Juel1)JSC-20090406
000888464 980__ $$aAPC