001     888465
005     20210415193201.0
024 7 _ |a 10.1063/5.0015398
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/26555
|2 Handle
024 7 _ |a 32872878
|2 pmid
024 7 _ |a WOS:000566895600003
|2 WOS
037 _ _ |a FZJ-2020-04933
082 _ _ |a 530
100 1 _ |a Peter, Emanuel K.
|0 P:(DE-Juel1)177673
|b 0
245 _ _ |a CORE-MD, a path correlated molecular dynamics simulation method
260 _ _ |a Melville, NY
|c 2020
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618497881_13388
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present an enhanced Molecular Dynamics (MD) simulation method, which is free from the requirement of a priori structural information of the system. The technique is capable of folding proteins with very low computational effort and requires only an energy parameter. The path correlated MD (CORE-MD) method uses the autocorrelation of the path integral over the reduced action and propagates the system along the history dependent path correlation. We validate the new technique in simulations of the conformational landscapes of dialanine and the TrpCage mini-peptide. We find that the novel method accelerates the sampling by three orders of magnitude and observe convergence of the conformational sampling in both cases. We conclude that the new method is broadly applicable for the enhanced sampling in MD simulations. The CORE-MD algorithm reaches a high accuracy compared with long time equilibrium MD simulations.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Schug (hkf6_20200501)
|0 G:(DE-Juel1)hkf6_20200501
|c hkf6_20200501
|f Forschergruppe Schug
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shea, Joan-Emma
|0 0000-0002-9801-9273
|b 1
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 2
|e Corresponding author
773 _ _ |a 10.1063/5.0015398
|g Vol. 153, no. 8, p. 084114 -
|0 PERI:(DE-600)1473050-9
|n 8
|p 084114 -
|t The journal of chemical physics
|v 153
|y 2020
|x 1089-7690
856 4 _ |u https://juser.fz-juelich.de/record/888465/files/5.0015398.pdf
|y Published on 2020-08-26. Available in OpenAccess from 2021-08-26.
909 C O |o oai:juser.fz-juelich.de:888465
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177673
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21