| Hauptseite > Publikationsdatenbank > CORE-MD, a path correlated molecular dynamics simulation method > print |
| 001 | 888465 | ||
| 005 | 20210415193201.0 | ||
| 024 | 7 | _ | |a 10.1063/5.0015398 |2 doi |
| 024 | 7 | _ | |a 0021-9606 |2 ISSN |
| 024 | 7 | _ | |a 1089-7690 |2 ISSN |
| 024 | 7 | _ | |a 1520-9032 |2 ISSN |
| 024 | 7 | _ | |a 2128/26555 |2 Handle |
| 024 | 7 | _ | |a 32872878 |2 pmid |
| 024 | 7 | _ | |a WOS:000566895600003 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04933 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Peter, Emanuel K. |0 P:(DE-Juel1)177673 |b 0 |
| 245 | _ | _ | |a CORE-MD, a path correlated molecular dynamics simulation method |
| 260 | _ | _ | |a Melville, NY |c 2020 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1618497881_13388 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We present an enhanced Molecular Dynamics (MD) simulation method, which is free from the requirement of a priori structural information of the system. The technique is capable of folding proteins with very low computational effort and requires only an energy parameter. The path correlated MD (CORE-MD) method uses the autocorrelation of the path integral over the reduced action and propagates the system along the history dependent path correlation. We validate the new technique in simulations of the conformational landscapes of dialanine and the TrpCage mini-peptide. We find that the novel method accelerates the sampling by three orders of magnitude and observe convergence of the conformational sampling in both cases. We conclude that the new method is broadly applicable for the enhanced sampling in MD simulations. The CORE-MD algorithm reaches a high accuracy compared with long time equilibrium MD simulations. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
| 536 | _ | _ | |a Forschergruppe Schug (hkf6_20200501) |0 G:(DE-Juel1)hkf6_20200501 |c hkf6_20200501 |f Forschergruppe Schug |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Shea, Joan-Emma |0 0000-0002-9801-9273 |b 1 |
| 700 | 1 | _ | |a Schug, Alexander |0 P:(DE-Juel1)173652 |b 2 |e Corresponding author |
| 773 | _ | _ | |a 10.1063/5.0015398 |g Vol. 153, no. 8, p. 084114 - |0 PERI:(DE-600)1473050-9 |n 8 |p 084114 - |t The journal of chemical physics |v 153 |y 2020 |x 1089-7690 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/888465/files/5.0015398.pdf |y Published on 2020-08-26. Available in OpenAccess from 2021-08-26. |
| 909 | C | O | |o oai:juser.fz-juelich.de:888465 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177673 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173652 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-05 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2018 |d 2020-09-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-05 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-05 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-05 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-09-05 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-05 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|