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ABSTRACT
We present an enhanced Molecular Dynamics (MD) simulation method, which is free from the requirement of a priori structural information
of the system. The technique is capable of folding proteins with very low computational effort and requires only an energy parameter. The path
correlated MD (CORE-MD) method uses the autocorrelation of the path integral over the reduced action and propagates the system along
the history dependent path correlation. We validate the new technique in simulations of the conformational landscapes of dialanine and the
TrpCage mini-peptide. We find that the novel method accelerates the sampling by three orders of magnitude and observe convergence of the
conformational sampling in both cases. We conclude that the new method is broadly applicable for the enhanced sampling in MD simulations.
The CORE-MD algorithm reaches a high accuracy compared with long time equilibrium MD simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015398., s

I. INTRODUCTION

The process of protein folding evolves along a multi-
dimensional funneled energy landscape. The sequence–structure
relationship of a protein is important for the development of novel
drug molecules and an understanding of biological or biochemi-
cal processes.1 Molecular Dynamics (MD) simulations are a useful
tool for the investigation of the kinetics and thermodynamics of
protein folding on a molecular level. However, biologically relevant
timescales can range to seconds, or orders of magnitude bigger2

MD simulations cannot readily reach the timescales necessary for
a convergent sampling of that process despite simulations where
specific hardware and software are applied.3 One option is using
a coarse-grained description of the biomolecular system to allow
sufficient sampling even of large-scale conformational transitions
such as those found during folding.4–7 One can also forego the

system dynamics and use Monte Carlo based sampling to obtain free
energy landscapes.8,9 In MD, significant progress has been achieved
in enhanced sampling methodologies capable of sampling protein
folding landscapes more efficiently. In general, a large number of
enhanced sampling MD methods differ in the definitions of the
reaction coordinate for the accelerated propagation of the system.
The methods can be roughly distinguished between projections in
the trajectory space and the space of energetic or geometric degrees
of freedom of a biomolecular system. Umbrella sampling methods
act on energetic and/or geometric degrees of freedom,10 where we
mention Wang–Landau sampling,11 meta- and hyperdynamics,12,13

conformational flooding,14 local elevation,15 and energy landscape
paving techniques9,16 that belong to that group. Recent develop-
ments couple umbrella sampling techniques with machine learn-
ing approaches.17–19 Other techniques that are part of umbrella
sampling methods are variational bias optimization,20 adaptive
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bias reweighting methodologies,21 frequency adaptive metadynam-
ics,22 and biasing techniques combined with Bayesian inference.23–25

Although a large number of enhanced sampling methodologies exist,
the generalization of collective variables for the enhanced sampling
is still a growing field of research.21,23–28 An alternative group of
methods that accelerate the sampling along the underlying trajec-
tory space have the advantage that they act adaptively and do not
require system dependent information.29 The first developments in
that group of methods are bonded and non-bonded constraints,
which are capable of reaching twofold to fourfold accelerations.30–33

Langevin damping, energy based techniques, and a whole group of
multiple time stepping methods allowed a 10-fold to 15-fold accel-
eration of MD simulations.34–37 More advanced techniques included
transition path-sampling techniques, biased path-sampling, mile-
stoning, and weighted ensemble techniques that apply a statistical
biasing between the initial and product states or depend on projec-
tions onto order parameters related to the underlying free energy
landscape (FEL).38–42

In this article, we present a novel technique that applies a cor-
relation dependent formalism. The CORE-MD method uses a cor-
relation dependent probability density extracted from the history
of the system. The resulting bias is derived adaptively from corre-
lation functions of the path integral over the reduced action. We
implemented the path correlated MD (CORE-MD) technique in the
GROMACS package.43 We validate the algorithm on dialanine and
a folding simulation of the TrpCage mini-peptide, which have been
studied extensively in the literature.8,9,12,38,44–60 We observe that the
novel method accelerates the sampling by many orders of magnitude
and observe convergence of the conformational sampling in both
cases.

II. METHODS
The presented method applies a correlation function formal-

ism to the Molecular Dynamics (MD) propagator. In the derivation
of our method, we define a propagator function and a correlation
dependent probability density function ρ. From the history depen-
dent probability density ρ, we derive the correlation dependent bias
(see Fig. 1). Therefore, the method determines the correlation C(t)
from the path integral over momenta p and displacements dq. Sub-
sequently, a correlation dependent potential defines the global like-
lihood gradient depending on the path correlation. The method is
applicable with one single additional energy parameter α and does
not require a priori structural information.

A. Theory
We start with the definition of the path over the reduced action

Li as a function of the momenta pi and coordinates qi for an atom
with the index i,58,59,61–63

Li = ∮ pidqi. (1)

For the calculation of this integral, we apply a summation over
the discretized path over momenta and displacements along the tra-
jectory. For the calculation of the momentum pi =mivi, we use a uni-
form atomic mass. Then, we define the path-dependent correlation
function Ci(t) as

FIG. 1. Schematic description of a correlation function C(t) of pathways L of a
protein from an initial q0 at a time t0 to a final state q1 at t1. The autocorrelation of
the adaptive path is used for the determination of the bias in our simulation using
a correlation dependent functional ρ.

Ci(t) =
1
τ∑t≤τ

(L′i − ⟨Li⟩)(Li − ⟨Li⟩)
∣L′i − ⟨Li⟩∥Li − ⟨Li⟩∣

, (2)

where ⟨⋯⟩ denotes the time average and L′i is determined at a time
t′ with a probability Pi(t′),

Pi(t′) =
1

1 + e−Ci(t′)
, (3)

at every time step. In the next step, we discretize the space of the cor-
relation function into a histogram ranging from −1 to +1 and define
a probability density ρi(t) at the time t for the history dependent
number of states NCi(t) and the total number of states in this state of
the correlation function Ci(t),

ρi(t) =
NCi(t)

∑iNCi(t)
. (4)

That definition of the local probability density allows the dis-
cretization of the path-dependent correlation and the definition of a
log likelihood function (see Eq. (3) below). As follows, we define the
correlation dependent density ρi(t) as a function of the correlation
function Ci(t) for an atom with index i,

ρi(t) =
∑t∑

Cμ=1
Cμ=−1 e

−
(Ci(t)−Cμ)2

2σ

∑i∑t∑
Cμ=1
Cμ=−1 e

−
(Ci(t)−Cμ)2

2σ

, (5)

where σ defines the width of the Gaussian function (due to the fact
that we apply a histogram over 102 bins, we apply σ = 2 × 10−2).
[see Fig. 2, where we show the time-dependency of the quanti-
ties C(t) and L over a simulation period of 1 ns]. Subsequently,
we introduce a log pseudo-likelihood function l of the correlation
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FIG. 2. History dependent quantities of the algorithm extracted every 100 time
steps from a simulation of TrpCage (extended conformation) over 1 ns (atom:
CA, Leu2). (a) Path components L as a function of MD time. (b) Components
of correlation function C(t) as a function of MD time.

dependent density. The log likelihood function of the history depen-
dent correlation density describes a form of a correlation dependent
potential,

li(t) = − log(ρi(t)), (6)

which defines the corresponding bias Ai with an additional parame-
ter α with the units of energy,

Ai = α∇li(t), (7)

as the derivative along a unit vector with a unit length due to
the dimensionality of the correlation function. As a consequence,
the bias gradient evolves as the gradient of the potential of the
history dependent probability density ρi(t), which is described
by the log functional in Eq. (6). That way, we maximize the

correlation dependent likelihood in analogy to the principle of
maximum entropy.64

We introduce a factorization of the total gradient by a factor
ri as a second segment into the CORE-MD algorithm. The appli-
cation of the bias gradient using only the bias derived from the
path-dependent correlation requires the sufficient sampling of the
correlation space. The correlation space of the path correlation is
sampled along a first-order rate equation (see the supplementary
material),

Ċi(t) = −ki1 t, (8)

where k1 stands for the first-order rate constant. In order to reach
a sufficient sampling efficiency of the correlation space, we scale
the resulting gradient by a correlation dependent factor r, in order
to enhance the decay of the autocorrelation and achieve a faster
access of the folded conformation space.65,66 As a consequence of
the factorization, the time-dependent behavior of the correlation
function is, then, described by a second-order rate equation (for the
derivation, see Sec. I.A. of the supplementary material),

Ċi(t) = −(ki1 + ki2)t. (9)

We define the factor ri(t) as

ri(t) = e−Ci(t)
(1 + Ci(t)). (10)

In the global picture, the log likelihood function converges
to the global log likelihood of the total correlation dependent
density Ξ,

lim
t→∞

li(t) = − log(Ξi), (11)

where we can approximate Ξi as the probability function Pi of the
path-dependent correlation,

Pi ≈ Ξi. (12)

Finally, we conclude that this algorithm samples the global
free energy in the infinite time limit due to the definition of
ΔFi = −kBT log(Pi).

B. Algorithm

● Increment the path integral [see Eq. (1)].
● Calculate correlation function C(t) using Eq. (2).
● Calculate the correlation dependent likelihood from Eq. (5).
● Calculate the new gradient using Eq. (7) and apply the

factorization from Eq. (10).

C. Simulation parameters and system setup
For all simulations, we used a modified version of the GRO-

MACS simulation package, version 4.5.5.43 The code and the run
input files of the validation simulations are available upon request.
We used the AMBER99-SB force field for describing the interac-
tions of peptides and ions.6,7,67,68 We used periodic boundary con-
ditions in xyz. In each simulation, we applied a time step of 1 fs.
All simulations have been carried out at a temperature of 300 K.
The temperature has been controlled using the velocity rescaling
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thermostat with a coupling constant τ = 1 ps.69 We used the standard
generalized Born solvent accessibility (GBSA) parameters, where
electrostatics and Lennard-Jones interactions were calculated using
a twin-range cutoff of 1.0/1.4 nm (the long-ranged interaction cal-
culated every second time step) (TrpCage). We mention that for
explicit solvent systems, the factor α has to be adjusted to smaller
values in the range below 0.1 kJ/mol. For dialanine, we used a cutoff
of 1.0/1.1 nm. In all simulations, we applied a neighbor list cutoff
equal to 1.0 nm with an update frequency every three time steps.
For the simulations of dialanine, we centered the extended peptide
(Ace-Ala-NMe) in a box with dimensions 2.27 × 2.27 × 2.27 nm3.
For the simulations of TrpCage,70 we centered the extended peptide
(NLYIQWLKDGGPSSGRPPPS) in a cubic box with a box-length of
7.022 nm. We propagated the TrpCage system over 100 ns and diala-
nine over 200 ns using α = 0.0. In ten validation simulations over 20
ns, we applied α-values ranging from −1000 kJ/mol to 1000 kJ/mol.
We performed a third equilibrium MD simulation of dialanine over
2 μs with the same conditions. [For the determination of the root
mean square deviation (RMSD), we used the NMR structure: 1l2y
model No. 1 as reference.] We defined the dihedral Φ by the atoms
C-N-CA-C and Ψ using N-CA-C-N of the dialanine peptide. We
compared the transition kinetics of the Φ-angle of dialanine in
2 μs with the CORE-MD result using a normalized number of tran-
sitions ν of the Φ angle, NΦ(t), from values below zero to positive
values,

ν =
NΦ(t)
Ndt

, (13)

which we normalize by the number of time-frames Ndt . We define
the acceleration factor a using the following relation:

a =
νb
νu

, (14)

where νu is the unbiased frequency and νb stands for the biased case.
For the determination of a, we first applied the analysis to the num-
ber of timeframes, while we second used a scaling by the simulation
time to determine the total acceleration factor. For dialanine, we
applied an energy parameter α equal to 0 so that the bias was depen-
dent on the factor ri(t), which acts on the gradient. In the simula-
tion of TrpCage, we used an energy parameter α equal to 5 kJ/mol.
The probability density ρi(t) was updated with a frequency equal to
1 ps−1 [see Eq. (5)]. For the measurement of the free energies ΔF, we
used71,72

ΔF = −kBT ln
P

Pmin
, (15)

where Pmin stands for the minimal probability of the projection on
two quantities, kB is Boltzmann’s constant, and T stands for the tem-
perature. We compared the free energy landscapes of the 2 μs MD
simulation with the CORE-MD result through the determination
of the difference ΔΔF between the MD and the CORE-MD result.
We defined the number of folding transitions N fold(t) as the sum
of RMSD-dependent folding events over time. We counted each
event as a transition, in which the RMSDCα−Cα (i.e. the root mean
square deviation of the Cα-atoms to the native structure, PDB: 1L2Y,
NMR model No. 1) changes from values above to values below a
given threshold (we varied the cutoff from 0.75 nm to 0.12 nm).

We plotted the number N fold as a function of MD time for different
cutoffs.

D. Program
The module has been implemented into the molecular dynam-

ics module of the GROMACS-4.5.5 package, into /src/kernel/md.c.
A global call to collect forces and coordinates is performed, and bias
forces are re-distributed onto each assigned core within the domain
decomposition of the simulation system. All simulations have been
carried out on a seven core Desktop with Intel Core(TM) i7-7700
CPUs 3.60 GHz computer using two cores for each simulation. The
average computation time of the dialanine systems was 2 h–4 h. We
simulated the folding landscape of TrpCage within 3 days.

III. RESULTS AND DISCUSSION
A. Dialanine

We applied the algorithm to the sampling of the conforma-
tional landscape of dialanine and compared the result with a 2 μs MD
simulation on the same system (see Fig. 3). The basic outline of the
CORE-MD algorithm contains two different segments: the history
dependent segment, which adds Gaussian functions to determine
a pseudo-likelihood l that is, then, applied as a bias to the system
using the energy parameter α = 0. The second segment applies a
correlation dependent shift to the total force contribution through
a factorization with the factor r. In order to evaluate the effect of
the factor r on the first CORE-MD validation simulation, we applied
an energy parameter α = 0 kJ/mol and conclude that the factoriza-
tion with the factor r is sufficient for an accurate sampling of the
FEL. In ten independent simulations, we applied different α-values
ranging from −1000 kJ/mol to 1000 kJ/mol to validate the effect of
this parameter (see Fig. 1S of the supplementary material). In the
simulations (CORE-MD, 200 ns α = 0.0 kJ/mol, and 2 μs MD), we
observe populations of ΔF = −9kBT at the minima (1, 2), and (3)
along the FEL [see Figs. 3(a) and 3(e)]. The minimum (4) is pop-
ulated with ∼−6kBT. We compared both results from equilibrium
MD and CORE-MD through the calculation of the difference ΔΔF
between both FELs. A large area of 41.8% of the CORE-MD land-
scape of dialanine is approximately identical with the result from
equilibrium MD within the range of the accuracy. A comparatively
big fraction of 31.8% of the FEL differs by 1kBT, while an area of
18.6% contains differences in the free energy in the range from
1 to 3kBT [see Fig. 3(c)]. In the difference plot, we observe that the
main populations (1, 2, 3, and 4) are sampled within an accuracy
of less than 1kBT, where the largest difference resides at the min-
imum (4) due to a slightly larger propensity for the minimum in
the CORE-MD simulation (Φ ≈ 50○, 0 < Ψ < 50○). We find larger
energy differences in the range from 1 to 3kBT at the regions that
lie apart from the main minima, especially at the regions (2a, 3a,
and 3b) [see Fig. 3(c)]. Finally, we compared the relative transi-
tion counts of the Φ-angle ν, which we normalized by the number
of time-frames Nt , which provides an estimate for the finite dif-
ference between the relative transitions in the CORE-MD simula-
tion and the equilibrium MD run. Using this measure, we find that
the relative acceleration of the CORE-MD sampling is 3.897 times
faster than the conventional MD simulation [see Fig. 3(g)]. If we
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FIG. 3. Results from CORE-MD validation simulations of dialanine (Ace-Ala-NMe) and 2 μs equilibrium MD of the same system. (a) Free energy landscape of dialanine as a
function of the dihedral angles Φ and Ψ from a 200 ns CORE-MD simulation using α = 0.0 kJ/mol. (b) Free energy landscape along the same order parameters averaged
over 20 ns CORE-MD with α = −0.1 kJ/mol. (c) ΔΔF plot, given by the difference between the 2 μs MD result and the FEL of the 200 ns CORE-MD simulation using α = 0.0
kJ/mol. (d) ΔΔF plot, given by the difference between the 2 μs MD result and the FEL of the 20 ns CORE-MD simulation using α = −0.1 kJ/mol. (e) Free energy landscape
of dialanine as a function of the dihedral angles Φ and Ψ from a 2 μs equilibrium MD simulation. (f) Free energy landscape of dialanine as a function of the dihedral angles Φ
and Ψ from a 200 ns CORE-MD simulation using α = 0.1 kJ/mol. (g) Normalized number of transitions of the Φ angle in the 200 ns CORE-MD simulation with α = 0.0 kJ/mol
and 2 μs MD as a function of the number of time-frames Ndt . (h) Normalized number of transitions of the Φ angle in the 20 ns CORE-MD simulation with α = −0.1 kJ/mol
and 2 μs MD as a function of the number of time-frames Ndt . The simulation using α = 0.0 kJ/mol (CORE-MD dynamics are, then, only dependent on the factor r) results in
an effective acceleration factor of 38.97, while the simulation with α = −0.1 kJ/mol leads to a factor equal to 263.0.

consider the total simulation time and apply it to the transition
counts, the factor is ten times larger, and the CORE-MD sampling
with α = 0.0 kJ/mol results in a 38.97 times larger transition rate of
the Φ-angle.

In the additional set of ten validation simulations over 20 ns,
we, then, tested the effect of the factor α with non-zero values rang-
ing from −1000 kJ/mol to 1000 kJ/mol to evaluate the effect of the
first segment of the algorithm on the conformational landscape of
dialanine. In general, we find that the parameter range at ±1000
kJ/mol contains too large energies, which can induce impeded tran-
sitions of the Φ-angle [see Figs. 1S(a) and 1S(b)]. Surprisingly, even
values of ±1 kJ/mol lead to a comparatively weak sampling of the
Φ-transition [see Figs. 1S(g) and 1S(h)]. The energetic window in
which the first segment of the CORE-MD algorithm accelerates the
Φ-transition lies in the range from ±0.01 kJ/mol to ±0.1 kJ/mol
because we again find a low propensity for Φ-transitions for α-values
below that specific magnitude of 0.01 kJ/mol (see Fig. 1S). For the
two simulations over 20 ns, we find again a very good quantita-
tive agreement of the FEL with the 2 μs MD result [see Figs. 3(b),
3(d), and 3(f)]. Surprisingly, an α-parameter equal to −0.1 leads to
an approximate equivalence of the resulting free energy values at the
main minima (1, 2, 3), and (4) [see Fig. 3(d)]. In the comparison of
the relative transition rate, we observe that the acceleration factor at
an α-value equal to 0.1 is 2.63, which results in a total acceleration
factor equal to 263 in relation to the MD simulation over 2 μs [see
Fig. 3(h)].

We conclude that the CORE-MD algorithm is capable of sam-
pling the conformational landscape of dialanine with a high accuracy
in comparison with 2 μs equilibrium MD. The factorization with the
factor r with a value of α = 0.0 kJ/mol is sufficient for the accurate
sampling of the system and leads to an effective acceleration equal
to a factor of 38.97. The application of non-zero alpha values in the
range from −1000 kJ/mol to 1000 kJ/mol shows that the choice of
this parameter is crucial for the sampling of the transition along the
Φ-angle. Within a suitable parameter range between ±0.01 kJ/mol
and ±0.1 kJ/mol, the conformational landscape of dialanine is sam-
pled accurately with a higher acceleration factor of 263, which is one
order of magnitude bigger than for α = 0.0 kJ/mol.

B. TrpCage
We validated the algorithm in a folding simulation of TrpCage

starting from an extended conformation (see Fig. 4). We observe
folding of the peptide to RMSDCα−Cα = 0.14 nm at ∼5 ns after an
initial collapse within first ns to RMSD ≈ 0.3 nm [see Fig. 4(a)].
After the population of the minimum with RMSD < 0.2 nm, the
contact between the N-terminal helix and the poly-proline segment
re-opens, and we observe a process of un-refolding over the com-
plete trajectory with a total number of ∼1500 folding and un-folding
events over the whole trajectory of 100 ns if we define the folded
state at RMSDCα−Cα ≤ 0.2 nm [see Fig. 4(b)]. Using the thresholds
RMSDCα−Cα ≤ 0.15 nm and RMSDCα−Cα ≤ 0.12 nm, we observe
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FIG. 4. Results from a validation simulation of folding of TrpCage. (a) RMSDCα−Cα of TrpCage to the native structure (PDB: 1l2y, model No. 1) as a function of simulation
time.70 (b) Kinetic analysis of the folding simulation of TrpCage. Number of folding transitions for different RMSD values in the range from 0.12 nm to 0.75 nm. (c) Free energy
landscape as a function of RMSDCα−Cα and the radius of gyration (Rg). Energy units on the color bar are in units of kBT. (d) Kinetic network analysis of folding pathways
from a RMSD based clustering.

126 (0.15 nm) and 14 folding events to reach RMSD values below
0.12 nm of this peptide. The free energy landscape of that simula-
tion contains a minimum at Rg = 0.75 and RMSDCα−Cα = 0.17 nm–
0.3 nm, while a region that is slightly higher in energy reaches states
below RMSD = 0.10 nm. At ∼50 ns, the transition frequency for
RMSDCα−Cα < 0.12 nm reaches a plateau. We point out that this
observation does not indicate that the simulations for the time before
50 ns are out of equilibrium, in principle, but that the global cor-
relation dependent functional has reached convergence within its
history dependent potential. We find that the unfolded state in that
set of simulations remains unpopulated with energies above −1kBT
[see Fig. 4(c)]. We conclude that TrpCage collapses to RMSD values
below 0.2 nm at various timescales, which indicates that the folding
pathways of that peptide can strongly vary in the transition time.
Using an RMSD based clustering with a cutoff equal to 0.1 nm,
we find that the dominant pathways of folding of TrpCage occur
via a helix-rich intermediate at 0.25 nm < RMSD <0.5 nm [con-
former (d)], which is accessed by conformations with an unfolded

alpha-helical part (c) or an ensemble of conformations, which con-
tains a pre-folded 3–10 helix [conformer (b)] [see Fig. 4(d)].

The folding pathway observed in that validation simulation is
dominated by the formation of the secondary structure and fol-
lowed by the formation of the tertiary fold as essential steps along
the folding pathway.50,51 A larger number of simulation studies agree
on the existence of two dominant pathways of folding of TrpCage:
the prior formation of the N-terminal helical element followed by
the closure of the hydrophobic pocket at Trp6, or second, the clo-
sure of the hydrophobic contact leading to the subsequent formation
of the N-terminal α-helix of TrpCage. The existence of these two
major folding pathways was observed in transition path-sampling
simulations53,54 and a theoretical study using extensive biases along
each potential minimum.55 Highly parallel simulations of TrpCage
with the folding@home project yielded accurate results on the fold-
ing transition times.56 Another very accurate folding time has been
observed with simulations of folding on a special purpose machine
ANTON.3 The observation of a predominant folding pathway is,
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in fact, also strongly force field dependent, and quantities as the
propensity for defined secondary structure elements can be affected
by the choice of the underlying energy functional.73–75 The pres-
ence of surfaces and their chemical nature define the affinity of
TrpCage for adsorption, which can change the folding landscape
with a stabilized native structure.76,77 In hybrid kMC/MD simula-
tions, we observed the formation of the 3–10 helix, which is followed
by the closure of the Poly-Pro helical segment of the peptide on
timescales ranging from 800 ns to 4 μs. The overall folding path-
way was dependent on the selected moves. In general, we observed
three different folding pathways.51,52 In the path-dependent biased
MD simulations, we observed the same patterns of folding path-
ways, while the folded minimum also contained a free energy of −7
to −9kBT.58,63,78,79 These values also agree with results from replica
exchange MD simulations.60 Very generally speaking, our observed
folding pathways are in agreement with these previous results, while
we find that the number of folding events is much higher than in
the previous simulations. The qualitative shape of the free energy
landscape changes slightly, when we compare our result with our
previous simulation studies. That observation can be attributed to
the implicit solvent environment used in that study. In explicit sol-
vent, the protein collapses within a larger heterogeneity of timescales
already in the unfolded state.51 Related to the total convergence of
the folded state, the CORE-MD algorithm shows a higher efficiency
than our previously developed algorithms applied on the same pro-
tein.51,52,58,63 Compared with a recent path-sampling MD implemen-
tation, the algorithm is ∼1500 times faster in terms of the sampling
of folding events of the same peptide.58 Our results are in agreement
with our previous findings and other theoretical studies.47–60

IV. CONCLUSIONS
In this paper, we presented a new enhanced sampling MD

method, which is independent from the requirement of any a priori
structural information about the system and needs only one energy
parameter as an additional input. We call this method the cor-
relation dependent MD method (CORE-MD). The method uses
path-dependent correlation functions as a collective variable and
constructs a history dependent correlation density in an adaptive
way. The resulting gradient is calculated within the dimensions of
the correlation function and evolves along a unit vector in con-
trast to conventional metadynamics implementations. We apply an
additional correlation dependent formalism to the resulting gra-
dient, which leads to an acceleration of the decay kinetics of the
auto-correlations in the system. We validate the new method on the
conformational landscape of dialanine and the folding of TrpCage.
In both cases, we find good agreement with the data reported in the
literature. In the sampling of TrpCage folding, the method reaches
an acceleration of folding events with a factor of 1500 compared
with a recent path-sampling implementation. The method is broadly
applicable to MD simulations, in general, such as the sampling of
polymer systems.

SUPPLEMENTARY MATERIAL

The supplementary material contains the derivation of the
effect of the factor ri(t) on the propagation (see Sec. II) and the

free energy landscapes of dialanine, where we varied the energy
factor α.
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