000888469 001__ 888469
000888469 005__ 20230515091806.0
000888469 0247_ $$2doi$$a10.1007/s00418-020-01887-5
000888469 0247_ $$2ISSN$$a0301-5564
000888469 0247_ $$2ISSN$$a0948-6143
000888469 0247_ $$2ISSN$$a1432-119X
000888469 0247_ $$2Handle$$a2128/26475
000888469 0247_ $$2pmid$$a32488346
000888469 0247_ $$2WOS$$aWOS:000537401300001
000888469 037__ $$aFZJ-2020-04937
000888469 082__ $$a570
000888469 1001_ $$0P:(DE-HGF)0$$aBosze, Bernadett$$b0
000888469 245__ $$aPcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish
000888469 260__ $$aBerlin$$bSpringer70296$$c2020
000888469 3367_ $$2DRIVER$$aarticle
000888469 3367_ $$2DataCite$$aOutput Types/Journal article
000888469 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607625900_4421
000888469 3367_ $$2BibTeX$$aARTICLE
000888469 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888469 3367_ $$00$$2EndNote$$aJournal Article
000888469 520__ $$aThe notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
000888469 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888469 536__ $$0G:(DE-Juel1)hkf6_20200501$$aForschergruppe Schug (hkf6_20200501)$$chkf6_20200501$$fForschergruppe Schug$$x1
000888469 542__ $$2Crossref$$i2020-06-01$$uhttps://creativecommons.org/licenses/by/4.0
000888469 542__ $$2Crossref$$i2020-06-01$$uhttps://creativecommons.org/licenses/by/4.0
000888469 588__ $$aDataset connected to CrossRef
000888469 7001_ $$00000-0002-7257-0120$$aOno, Yosuke$$b1
000888469 7001_ $$0P:(DE-HGF)0$$aMattes, Benjamin$$b2
000888469 7001_ $$0P:(DE-HGF)0$$aSinner, Claude$$b3
000888469 7001_ $$0P:(DE-HGF)0$$aGourain, Victor$$b4
000888469 7001_ $$0P:(DE-HGF)0$$aThumberger, Thomas$$b5
000888469 7001_ $$0P:(DE-HGF)0$$aTlili, Sham$$b6
000888469 7001_ $$0P:(DE-HGF)0$$aWittbrodt, Joachim$$b7
000888469 7001_ $$0P:(DE-HGF)0$$aSaunders, Timothy E.$$b8
000888469 7001_ $$0P:(DE-HGF)0$$aSträhle, Uwe$$b9
000888469 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b10$$ufzj
000888469 7001_ $$00000-0002-4903-9657$$aScholpp, Steffen$$b11$$eCorresponding author
000888469 77318 $$2Crossref$$3journal-article$$a10.1007/s00418-020-01887-5$$bSpringer Science and Business Media LLC$$d2020-06-01$$n5$$p463-480$$tHistochemistry and Cell Biology$$v154$$x0948-6143$$y2020
000888469 773__ $$0PERI:(DE-600)1398345-3$$a10.1007/s00418-020-01887-5$$n5$$p463-480$$tHistochemistry and cell biology$$v154$$x0948-6143$$y2020
000888469 8564_ $$uhttps://juser.fz-juelich.de/record/888469/files/Bosze2020_Article_Pcdh18aRegulatesEndocytosisOfE.pdf$$yOpenAccess
000888469 909CO $$ooai:juser.fz-juelich.de:888469$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b10$$kFZJ
000888469 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888469 9141_ $$y2020
000888469 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000888469 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000888469 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888469 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHISTOCHEM CELL BIOL : 2014
000888469 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000888469 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000888469 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000888469 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000888469 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888469 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000888469 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000888469 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000888469 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000888469 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000888469 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000888469 980__ $$ajournal
000888469 980__ $$aVDB
000888469 980__ $$aUNRESTRICTED
000888469 980__ $$aI:(DE-Juel1)JSC-20090406
000888469 980__ $$aI:(DE-Juel1)NIC-20090406
000888469 9801_ $$aFullTexts
000888469 999C5 $$1E Aamar$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ydbio.2008.03.040$$p335 -$$tDev Biol$$uAamar E, Dawid IB (2008) Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 318:335–346$$v318$$y2008
000888469 999C5 $$1J Bakkers$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.00954$$p525 -$$tDevelopment$$uBakkers J, Kramer C, Pothof J, Quaedvlieg NE, Spaink HP, Hammerschmidt M (2004) Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131:525–537$$v131$$y2004
000888469 999C5 $$1S Biswas$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.e13-08-0475$$p633 -$$tMol Biol Cell$$uBiswas S, Emond MR, Duy PQ, Hao LT, Beattie CE, Jontes JD (2014) Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish. Mol Biol Cell 25:633–642$$v25$$y2014
000888469 999C5 $$1MJ Blanco$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.006858$$p4073 -$$tDevelopment$$uBlanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, Mayor R, Nieto MA (2007) Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development 134:4073–4081$$v134$$y2007
000888469 999C5 $$1M Brand$$2Crossref$$tZebrafish: a practical approach$$uBrand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, pp 7–38$$y2002
000888469 999C5 $$1J Brasch$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tcb.2012.03.004$$p299 -$$tTrends Cell Biol$$uBrasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310$$v22$$y2012
000888469 999C5 $$1L Brüser$$2Crossref$$9-- missing cx lookup --$$a10.1101/cshperspect.a029140$$pa029140 -$$tCold Spring Harb Perspect Biol$$uBrüser L, Bogdan S (2017) Adherens junctions on the move-membrane trafficking of E-cadherin. Cold Spring Harb Perspect Biol 9:a029140$$v9$$y2017
000888469 999C5 $$1A Burger$$2Crossref$$uBurger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C (2016) Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143:2025–2037$$y2016
000888469 999C5 $$1J Chal$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.151035$$p664 -$$tDevelopment$$uChal J, Guillot C, Pourquié O (2017) PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion. Development 144:664–676$$v144$$y2017
000888469 999C5 $$1X Chen$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200602062$$p301 -$$tJ Cell Biol$$uChen X, Gumbiner BM (2006) Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 174:301–313$$v174$$y2006
000888469 999C5 $$1B Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2013.11.048$$p195 -$$tCell$$uChen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207$$v156$$y2014
000888469 999C5 $$1BS Clark$$2Crossref$$9-- missing cx lookup --$$a10.1002/dvdy.22758$$p2452 -$$tDev Dyn$$uClark BS, Winter M, Cohen AR, Link BA (2011) Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 240:2452–2465$$v240$$y2011
000888469 999C5 $$1JG Dumortier$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0118474$$pe0118474 -$$tPLoS ONE$$uDumortier JG, David NB (2015) The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS ONE 10:e0118474$$v10$$y2015
000888469 999C5 $$1JG Dumortier$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1205870109$$p16945 -$$tProc Natl Acad Sci USA$$uDumortier JG, Martin S, Meyer D, Rosa FM, David NB (2012) Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc Natl Acad Sci USA 109:16945–16950$$v109$$y2012
000888469 999C5 $$1MA El-Brolosy$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pgen.1006780$$pe1006780 -$$tPLoS Genet$$uEl-Brolosy MA, Stainier DYR (2017) Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet 13:e1006780$$v13$$y2017
000888469 999C5 $$1KZ El-Brolosy$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1064-z$$p193 -$$tNature$$uEl-Brolosy KZ, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR (2019) Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–197$$v568$$y2019
000888469 999C5 $$1MR Emond$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ydbio.2009.07.008$$p72 -$$tDev Biol$$uEmond MR, Biswas S, Jontes JD (2009) Protocadherin-19 is essential for early steps in brain morphogenesis. Dev Biol 334:72–83$$v334$$y2009
000888469 999C5 $$1B Feldman$$2Crossref$$9-- missing cx lookup --$$a10.1038/26013$$p181 -$$tNature$$uFeldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185$$v395$$y1998
000888469 999C5 $$1D Fichtner$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0093123$$pe93123 -$$tPLoS ONE$$uFichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM (2014) Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS ONE 9:e93123$$v9$$y2014
000888469 999C5 $$1NS Glickman$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.00314$$p873 -$$tDevelopment$$uGlickman NS, Kimmel CB, Jones MA, Adams RJ (2003) Shaping the zebrafish notochord. Development 130:873–887$$v130$$y2003
000888469 999C5 $$1F Graner$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.69.2013$$p2013 -$$tPhys Rev Lett$$uGraner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016$$v69$$y1992
000888469 999C5 $$1Y Hara$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ydbio.2013.07.023$$p482 -$$tDev Biol$$uHara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N (2013) Directional migration of leading-edge mesoderm generates physical forces: implication in Xenopus notochord formation during gastrulation. Dev Biol 382:482–495$$v382$$y2013
000888469 999C5 $$1S Hayashi$$2Crossref$$uHayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128:1455–1464$$y2015
000888469 999C5 $$1S Hayashi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2014.07.015$$p673 -$$tDev Cell$$uHayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, Tanaka Y, Takeichi M (2014) Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev Cell 30:673–687$$v30$$y2014
000888469 999C5 $$1RB Hazan$$2Crossref$$9-- missing cx lookup --$$a10.1196/annals.1294.016$$p155 -$$tAnn NY Acad Sci$$uHazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann NY Acad Sci 1014:155–163$$v1014$$y2004
000888469 999C5 $$1C-P Heisenberg$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.gde.2008.07.011$$p311 -$$tCurr Opin Genet Dev$$uHeisenberg C-P, Solnica-Krezel L (2008) Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr Opin Genet Dev 18:311–316$$v18$$y2008
000888469 999C5 $$1CP Heisenberg$$2Crossref$$9-- missing cx lookup --$$a10.1038/35011068$$p76 -$$tNature$$uHeisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81$$v405$$y2000
000888469 999C5 $$1WY Hwang$$2Crossref$$9-- missing cx lookup --$$a10.1038/nbt.2501$$p227 -$$tNat Biotechnol$$uHwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229$$v31$$y2013
000888469 999C5 $$1M Kai$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.020396$$p3043 -$$tDevelopment$$uKai M, Heisenberg CP, Tada M (2008) Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation. Development 135:3043–3051$$v135$$y2008
000888469 999C5 $$1R Keller$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1079478$$p1950 -$$tScience$$uKeller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–1954$$v298$$y2002
000888469 999C5 $$1R Keller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ceb.2005.08.006$$p533 -$$tCurr Opin Cell Biol$$uKeller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17:533–541$$v17$$y2005
000888469 999C5 $$1SH Kim$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.125.23.4681$$p4681 -$$tDevelopment$$uKim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690$$v125$$y1998
000888469 999C5 $$1D Kimelman$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0959-437X(00)00095-2$$p350 -$$tCurr Opin Genet Dev$$uKimelman D, Griffin KJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10:350–356$$v10$$y2000
000888469 999C5 $$1B Kraft$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.201110076$$p695 -$$tJ Cell Biol$$uKraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D (2012) Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J Cell Biol 198:695–709$$v198$$y2012
000888469 999C5 $$1RP Langhe$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10909$$p10909 -$$tNat Commun$$uLanghe RP, Gudzenko T, Bachmann M, Becker SF, Gonnermann C, Winter C, Abbruzzese G, Alfandari D, Kratzer MC, Franz CM, Kashef J (2016) Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion. Nat Commun 7:10909$$v7$$y2016
000888469 999C5 $$1Q le Duc$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.201001149$$p1107 -$$tJ Cell Biol$$ule Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooji J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115$$v189$$y2010
000888469 999C5 $$1J-L Maître$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cub.2013.06.019$$pR626 -$$tCurr Biol$$uMaître J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633$$v23$$y2013
000888469 999C5 $$1B Mattes$$2Crossref$$9-- missing cx lookup --$$a10.1186/1749-8104-7-12$$p12 -$$tNeural Dev$$uMattes B, Weber S, Peres J, Chen Q, Davidson G, Houart C, Scholpp S (2012) Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 7:12$$v7$$y2012
000888469 999C5 $$1R Mayor$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm.2015.14$$p97 -$$tNat Rev Mol Cell Biol$$uMayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109$$v17$$y2016
000888469 999C5 $$1A Medina$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.emboj.7600329$$p3249 -$$tEMBO J$$uMedina A, Swain RK, Kuerner KM, Steinbeisser H (2004) Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J 23:3249–3258$$v23$$y2004
000888469 999C5 $$1DC Myers$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9525(02)02725-7$$p447 -$$tTrends Genet$$uMyers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18:447–455$$v18$$y2002
000888469 999C5 $$1M Nagel$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.01141$$p2727 -$$tDevelopment$$uNagel M, Tahinci E, Symes K, Winklbauer R (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131:2727–2736$$v131$$y2004
000888469 999C5 $$1S Nakao$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200802069$$p395 -$$tJ Cell Biol$$uNakao S, Platek A, Hirano S, Takeichi M (2008) Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J Cell Biol 182:395–410$$v182$$y2008
000888469 999C5 $$1S Pece$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M006578200$$p41227 -$$tJ Biol Chem$$uPece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275:41227–41233$$v275$$y2000
000888469 999C5 $$1E Perret$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0402085101$$p16472 -$$tProc Natl Acad Sci USA$$uPerret E, Leung A, Feracci H, Evans E (2004) Trans-bonded pairs of E-cadherin exhibit a remarkable hierarchy of mechanical strengths. Proc Natl Acad Sci USA 101:16472–16477$$v101$$y2004
000888469 999C5 $$1A Rossi$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14580$$p230 -$$tNature$$uRossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233$$v524$$y2015
000888469 999C5 $$1I Roszko$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.semcdb.2009.09.004$$p986 -$$tSemin Cell Dev Biol$$uRoszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997$$v20$$y2009
000888469 999C5 $$1I Roszko$$2Crossref$$uRoszko I, Sepich D, Jessen JR, Chandrasekhar A, Solnica-Krezel L (2015) A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 142:2508–2520$$y2015
000888469 999C5 $$1K Sampath$$2Crossref$$9-- missing cx lookup --$$a10.1038/26020$$p185 -$$tNature$$uSampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395:185–189$$v395$$y1998
000888469 999C5 $$1E Scarpa$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2015.06.012$$p421 -$$tDev Cell$$uScarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R (2015) Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev Cell 34:421–434$$v34$$y2015
000888469 999C5 $$1AF Schier$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.124.2.327$$p327 -$$tDevelopment$$uSchier AF, Neuhauss SC, Helde KA, Talbot WS, Driever W (1997) The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124:327–342$$v124$$y1997
000888469 999C5 $$1S Scholpp$$2Crossref$$9-- missing cx lookup --$$a10.1002/dvdy.10384$$p313 -$$tDev Dyn$$uScholpp S, Brand M (2003) Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants. Dev Dyn 228:313–322$$v228$$y2003
000888469 999C5 $$1A Shimada$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.011494$$p281 -$$tDevelopment$$uShimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, Kobayashi D, Takeda H (2008) Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development 135:281–290$$v135$$y2008
000888469 999C5 $$1A Shkumatava$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.01247$$p3849 -$$tDevelopment$$uShkumatava A, Fischer S, Müller F, Strähle U, Neumann CJ (2004) Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131:3849–3858$$v131$$y2004
000888469 999C5 $$1J Shih$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.116.4.901$$p901 -$$tDevelopment$$uShih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914$$v116$$y1992
000888469 999C5 $$1S Song$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2013.01.016$$p486 -$$tDev Cell$$uSong S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W (2013) Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 24:486–501$$v24$$y2013
000888469 999C5 $$1M Stemmer$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0124633$$pe0124633 -$$tPLoS ONE$$uStemmer M, Thumberger T, Del Sol KM, Wittbrodt J, Mateo JL (2015) CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10:e0124633$$v10$$y2015
000888469 999C5 $$1DL Stemple$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.01812$$p2503 -$$tDevelopment$$uStemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512$$v132$$y2005
000888469 999C5 $$1M Tada$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.073007$$p3897 -$$tDevelopment$$uTada M, Heisenberg C-P (2012) Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139:3897–3904$$v139$$y2012
000888469 999C5 $$1E Theveneau$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ceb.2012.08.002$$p677 -$$tCurr Opin Cell Biol$$uTheveneau E, Mayor R (2012) Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 24:677–684$$v24$$y2012
000888469 999C5 $$1F Ulrich$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.00758$$p5375 -$$tDevelopment$$uUlrich F, Concha ML, Heid PJ, Voss E, Witzel S, Roehl H, Tada M, Wilson SW, Adams RJ, Soll DR, Heisenberg CP (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130:5375–5384$$v130$$y2003
000888469 999C5 $$1F Ulrich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2005.08.011$$p555 -$$tDev Cell$$uUlrich F, Krieg M, Schötz EM, Link V, Castanon I, Schnabel V, Taubenberger A, Mueller D, Puech PH, Heisenberg CP (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell 9:555–564$$v9$$y2005
000888469 999C5 $$1F Unterseher$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.emboj.7600332$$p3259 -$$tEMBO J$$uUnterseher F, Hefele JA, Giehl K, De Robertis EM, Wedlich D, Schambony A (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23:3259–3269$$v23$$y2004
000888469 999C5 $$1DK Vig$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bpj.2016.02.032$$p1469 -$$tBiophys J$$uVig DK, Hamby AE, Wolgemuth CW (2016) On the quantification of cellular velocity fields. Biophys J 110:1469–1475$$v110$$y2016
000888469 999C5 $$1J Wang$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.02347$$p1767 -$$tDevelopment$$uWang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A (2006) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778$$v133$$y2006
000888469 999C5 $$1RM Warga$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.108.4.569$$p569 -$$tDevelopment$$uWarga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580$$v108$$y1990
000888469 999C5 $$1GF Weber$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2011.10.013$$p104 -$$tDev Cell$$uWeber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115$$v22$$y2012
000888469 999C5 $$1MLK Williams$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03715-w$$p1319 -$$tNat Commun$$uWilliams MLK, Sawada A, Budine T, Yin C, Gontarz P, Solnica-Krezel L (2018) Gon4l regulates notochord boundary formation and cell polarity underlying axis extension by repressing adhesion genes. Nat Commun 9:1319$$v9$$y2018
000888469 999C5 $$1Y Yamanaka$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2007.10.016$$p884 -$$tDev Cell$$uYamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13:884–896$$v13$$y2007
000888469 999C5 $$1S Yasuda$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2007.08.020$$p456 -$$tNeuron$$uYasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, De Robertis EM, Yamagata K (2007) Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 56:456–471$$v56$$y2007
000888469 999C5 $$1P Ybot-Gonzalez$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.000380$$p789 -$$tDevelopment$$uYbot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799$$v134$$y2007
000888469 999C5 $$1WW Yen$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.030601$$p2039 -$$tDevelopment$$uYen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, Lu X, Sutherland A (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048$$v136$$y2009
000888469 999C5 $$1C Yin$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200704150$$p221 -$$tJ Cell Biol$$uYin C, Kiskowski M, Pouille PA, Farge E, Solnica-Krezel L (2008) Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 180:221–232$$v180$$y2008