001     888469
005     20230515091806.0
024 7 _ |a 10.1007/s00418-020-01887-5
|2 doi
024 7 _ |a 0301-5564
|2 ISSN
024 7 _ |a 0948-6143
|2 ISSN
024 7 _ |a 1432-119X
|2 ISSN
024 7 _ |a 2128/26475
|2 Handle
024 7 _ |a 32488346
|2 pmid
024 7 _ |a WOS:000537401300001
|2 WOS
037 _ _ |a FZJ-2020-04937
082 _ _ |a 570
100 1 _ |a Bosze, Bernadett
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish
260 _ _ |a Berlin
|c 2020
|b Springer70296
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607625900_4421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Schug (hkf6_20200501)
|0 G:(DE-Juel1)hkf6_20200501
|c hkf6_20200501
|f Forschergruppe Schug
|x 1
542 _ _ |i 2020-06-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2020-06-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ono, Yosuke
|0 0000-0002-7257-0120
|b 1
700 1 _ |a Mattes, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sinner, Claude
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gourain, Victor
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Thumberger, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tlili, Sham
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wittbrodt, Joachim
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Saunders, Timothy E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Strähle, Uwe
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 10
|u fzj
700 1 _ |a Scholpp, Steffen
|0 0000-0002-4903-9657
|b 11
|e Corresponding author
773 1 8 |a 10.1007/s00418-020-01887-5
|b Springer Science and Business Media LLC
|d 2020-06-01
|n 5
|p 463-480
|3 journal-article
|2 Crossref
|t Histochemistry and Cell Biology
|v 154
|y 2020
|x 0948-6143
773 _ _ |a 10.1007/s00418-020-01887-5
|0 PERI:(DE-600)1398345-3
|n 5
|p 463-480
|t Histochemistry and cell biology
|v 154
|y 2020
|x 0948-6143
856 4 _ |u https://juser.fz-juelich.de/record/888469/files/Bosze2020_Article_Pcdh18aRegulatesEndocytosisOfE.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888469
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HISTOCHEM CELL BIOL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.ydbio.2008.03.040
|9 -- missing cx lookup --
|1 E Aamar
|p 335 -
|2 Crossref
|u Aamar E, Dawid IB (2008) Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 318:335–346
|t Dev Biol
|v 318
|y 2008
999 C 5 |a 10.1242/dev.00954
|9 -- missing cx lookup --
|1 J Bakkers
|p 525 -
|2 Crossref
|u Bakkers J, Kramer C, Pothof J, Quaedvlieg NE, Spaink HP, Hammerschmidt M (2004) Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131:525–537
|t Development
|v 131
|y 2004
999 C 5 |a 10.1091/mbc.e13-08-0475
|9 -- missing cx lookup --
|1 S Biswas
|p 633 -
|2 Crossref
|u Biswas S, Emond MR, Duy PQ, Hao LT, Beattie CE, Jontes JD (2014) Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish. Mol Biol Cell 25:633–642
|t Mol Biol Cell
|v 25
|y 2014
999 C 5 |a 10.1242/dev.006858
|9 -- missing cx lookup --
|1 MJ Blanco
|p 4073 -
|2 Crossref
|u Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, Mayor R, Nieto MA (2007) Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development 134:4073–4081
|t Development
|v 134
|y 2007
999 C 5 |1 M Brand
|y 2002
|2 Crossref
|u Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, pp 7–38
|t Zebrafish: a practical approach
999 C 5 |a 10.1016/j.tcb.2012.03.004
|9 -- missing cx lookup --
|1 J Brasch
|p 299 -
|2 Crossref
|u Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310
|t Trends Cell Biol
|v 22
|y 2012
999 C 5 |a 10.1101/cshperspect.a029140
|9 -- missing cx lookup --
|1 L Brüser
|p a029140 -
|2 Crossref
|u Brüser L, Bogdan S (2017) Adherens junctions on the move-membrane trafficking of E-cadherin. Cold Spring Harb Perspect Biol 9:a029140
|t Cold Spring Harb Perspect Biol
|v 9
|y 2017
999 C 5 |1 A Burger
|y 2016
|2 Crossref
|u Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C (2016) Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143:2025–2037
999 C 5 |a 10.1242/dev.151035
|9 -- missing cx lookup --
|1 J Chal
|p 664 -
|2 Crossref
|u Chal J, Guillot C, Pourquié O (2017) PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion. Development 144:664–676
|t Development
|v 144
|y 2017
999 C 5 |a 10.1083/jcb.200602062
|9 -- missing cx lookup --
|1 X Chen
|p 301 -
|2 Crossref
|u Chen X, Gumbiner BM (2006) Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 174:301–313
|t J Cell Biol
|v 174
|y 2006
999 C 5 |a 10.1016/j.cell.2013.11.048
|9 -- missing cx lookup --
|1 B Chen
|p 195 -
|2 Crossref
|u Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207
|t Cell
|v 156
|y 2014
999 C 5 |a 10.1002/dvdy.22758
|9 -- missing cx lookup --
|1 BS Clark
|p 2452 -
|2 Crossref
|u Clark BS, Winter M, Cohen AR, Link BA (2011) Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 240:2452–2465
|t Dev Dyn
|v 240
|y 2011
999 C 5 |a 10.1371/journal.pone.0118474
|9 -- missing cx lookup --
|1 JG Dumortier
|p e0118474 -
|2 Crossref
|u Dumortier JG, David NB (2015) The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS ONE 10:e0118474
|t PLoS ONE
|v 10
|y 2015
999 C 5 |a 10.1073/pnas.1205870109
|9 -- missing cx lookup --
|1 JG Dumortier
|p 16945 -
|2 Crossref
|u Dumortier JG, Martin S, Meyer D, Rosa FM, David NB (2012) Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc Natl Acad Sci USA 109:16945–16950
|t Proc Natl Acad Sci USA
|v 109
|y 2012
999 C 5 |a 10.1371/journal.pgen.1006780
|9 -- missing cx lookup --
|1 MA El-Brolosy
|p e1006780 -
|2 Crossref
|u El-Brolosy MA, Stainier DYR (2017) Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet 13:e1006780
|t PLoS Genet
|v 13
|y 2017
999 C 5 |a 10.1038/s41586-019-1064-z
|9 -- missing cx lookup --
|1 KZ El-Brolosy
|p 193 -
|2 Crossref
|u El-Brolosy KZ, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR (2019) Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–197
|t Nature
|v 568
|y 2019
999 C 5 |a 10.1016/j.ydbio.2009.07.008
|9 -- missing cx lookup --
|1 MR Emond
|p 72 -
|2 Crossref
|u Emond MR, Biswas S, Jontes JD (2009) Protocadherin-19 is essential for early steps in brain morphogenesis. Dev Biol 334:72–83
|t Dev Biol
|v 334
|y 2009
999 C 5 |a 10.1038/26013
|9 -- missing cx lookup --
|1 B Feldman
|p 181 -
|2 Crossref
|u Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185
|t Nature
|v 395
|y 1998
999 C 5 |a 10.1371/journal.pone.0093123
|9 -- missing cx lookup --
|1 D Fichtner
|p e93123 -
|2 Crossref
|u Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM (2014) Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS ONE 9:e93123
|t PLoS ONE
|v 9
|y 2014
999 C 5 |a 10.1242/dev.00314
|9 -- missing cx lookup --
|1 NS Glickman
|p 873 -
|2 Crossref
|u Glickman NS, Kimmel CB, Jones MA, Adams RJ (2003) Shaping the zebrafish notochord. Development 130:873–887
|t Development
|v 130
|y 2003
999 C 5 |a 10.1103/PhysRevLett.69.2013
|9 -- missing cx lookup --
|1 F Graner
|p 2013 -
|2 Crossref
|u Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016
|t Phys Rev Lett
|v 69
|y 1992
999 C 5 |a 10.1016/j.ydbio.2013.07.023
|9 -- missing cx lookup --
|1 Y Hara
|p 482 -
|2 Crossref
|u Hara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N (2013) Directional migration of leading-edge mesoderm generates physical forces: implication in Xenopus notochord formation during gastrulation. Dev Biol 382:482–495
|t Dev Biol
|v 382
|y 2013
999 C 5 |1 S Hayashi
|y 2015
|2 Crossref
|u Hayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128:1455–1464
999 C 5 |a 10.1016/j.devcel.2014.07.015
|9 -- missing cx lookup --
|1 S Hayashi
|p 673 -
|2 Crossref
|u Hayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, Tanaka Y, Takeichi M (2014) Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev Cell 30:673–687
|t Dev Cell
|v 30
|y 2014
999 C 5 |a 10.1196/annals.1294.016
|9 -- missing cx lookup --
|1 RB Hazan
|p 155 -
|2 Crossref
|u Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann NY Acad Sci 1014:155–163
|t Ann NY Acad Sci
|v 1014
|y 2004
999 C 5 |a 10.1016/j.gde.2008.07.011
|9 -- missing cx lookup --
|1 C-P Heisenberg
|p 311 -
|2 Crossref
|u Heisenberg C-P, Solnica-Krezel L (2008) Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr Opin Genet Dev 18:311–316
|t Curr Opin Genet Dev
|v 18
|y 2008
999 C 5 |a 10.1038/35011068
|9 -- missing cx lookup --
|1 CP Heisenberg
|p 76 -
|2 Crossref
|u Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81
|t Nature
|v 405
|y 2000
999 C 5 |a 10.1038/nbt.2501
|9 -- missing cx lookup --
|1 WY Hwang
|p 227 -
|2 Crossref
|u Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229
|t Nat Biotechnol
|v 31
|y 2013
999 C 5 |a 10.1242/dev.020396
|9 -- missing cx lookup --
|1 M Kai
|p 3043 -
|2 Crossref
|u Kai M, Heisenberg CP, Tada M (2008) Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation. Development 135:3043–3051
|t Development
|v 135
|y 2008
999 C 5 |a 10.1126/science.1079478
|9 -- missing cx lookup --
|1 R Keller
|p 1950 -
|2 Crossref
|u Keller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–1954
|t Science
|v 298
|y 2002
999 C 5 |a 10.1016/j.ceb.2005.08.006
|9 -- missing cx lookup --
|1 R Keller
|p 533 -
|2 Crossref
|u Keller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17:533–541
|t Curr Opin Cell Biol
|v 17
|y 2005
999 C 5 |a 10.1242/dev.125.23.4681
|9 -- missing cx lookup --
|1 SH Kim
|p 4681 -
|2 Crossref
|u Kim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690
|t Development
|v 125
|y 1998
999 C 5 |a 10.1016/S0959-437X(00)00095-2
|9 -- missing cx lookup --
|1 D Kimelman
|p 350 -
|2 Crossref
|u Kimelman D, Griffin KJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10:350–356
|t Curr Opin Genet Dev
|v 10
|y 2000
999 C 5 |a 10.1083/jcb.201110076
|9 -- missing cx lookup --
|1 B Kraft
|p 695 -
|2 Crossref
|u Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D (2012) Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J Cell Biol 198:695–709
|t J Cell Biol
|v 198
|y 2012
999 C 5 |a 10.1038/ncomms10909
|9 -- missing cx lookup --
|1 RP Langhe
|p 10909 -
|2 Crossref
|u Langhe RP, Gudzenko T, Bachmann M, Becker SF, Gonnermann C, Winter C, Abbruzzese G, Alfandari D, Kratzer MC, Franz CM, Kashef J (2016) Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion. Nat Commun 7:10909
|t Nat Commun
|v 7
|y 2016
999 C 5 |a 10.1083/jcb.201001149
|9 -- missing cx lookup --
|1 Q le Duc
|p 1107 -
|2 Crossref
|u le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooji J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115
|t J Cell Biol
|v 189
|y 2010
999 C 5 |a 10.1016/j.cub.2013.06.019
|9 -- missing cx lookup --
|1 J-L Maître
|p R626 -
|2 Crossref
|u Maître J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633
|t Curr Biol
|v 23
|y 2013
999 C 5 |a 10.1186/1749-8104-7-12
|9 -- missing cx lookup --
|1 B Mattes
|p 12 -
|2 Crossref
|u Mattes B, Weber S, Peres J, Chen Q, Davidson G, Houart C, Scholpp S (2012) Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 7:12
|t Neural Dev
|v 7
|y 2012
999 C 5 |a 10.1038/nrm.2015.14
|9 -- missing cx lookup --
|1 R Mayor
|p 97 -
|2 Crossref
|u Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109
|t Nat Rev Mol Cell Biol
|v 17
|y 2016
999 C 5 |a 10.1038/sj.emboj.7600329
|9 -- missing cx lookup --
|1 A Medina
|p 3249 -
|2 Crossref
|u Medina A, Swain RK, Kuerner KM, Steinbeisser H (2004) Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J 23:3249–3258
|t EMBO J
|v 23
|y 2004
999 C 5 |a 10.1016/S0168-9525(02)02725-7
|9 -- missing cx lookup --
|1 DC Myers
|p 447 -
|2 Crossref
|u Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18:447–455
|t Trends Genet
|v 18
|y 2002
999 C 5 |a 10.1242/dev.01141
|9 -- missing cx lookup --
|1 M Nagel
|p 2727 -
|2 Crossref
|u Nagel M, Tahinci E, Symes K, Winklbauer R (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131:2727–2736
|t Development
|v 131
|y 2004
999 C 5 |a 10.1083/jcb.200802069
|9 -- missing cx lookup --
|1 S Nakao
|p 395 -
|2 Crossref
|u Nakao S, Platek A, Hirano S, Takeichi M (2008) Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J Cell Biol 182:395–410
|t J Cell Biol
|v 182
|y 2008
999 C 5 |a 10.1074/jbc.M006578200
|9 -- missing cx lookup --
|1 S Pece
|p 41227 -
|2 Crossref
|u Pece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275:41227–41233
|t J Biol Chem
|v 275
|y 2000
999 C 5 |a 10.1073/pnas.0402085101
|9 -- missing cx lookup --
|1 E Perret
|p 16472 -
|2 Crossref
|u Perret E, Leung A, Feracci H, Evans E (2004) Trans-bonded pairs of E-cadherin exhibit a remarkable hierarchy of mechanical strengths. Proc Natl Acad Sci USA 101:16472–16477
|t Proc Natl Acad Sci USA
|v 101
|y 2004
999 C 5 |a 10.1038/nature14580
|9 -- missing cx lookup --
|1 A Rossi
|p 230 -
|2 Crossref
|u Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233
|t Nature
|v 524
|y 2015
999 C 5 |a 10.1016/j.semcdb.2009.09.004
|9 -- missing cx lookup --
|1 I Roszko
|p 986 -
|2 Crossref
|u Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997
|t Semin Cell Dev Biol
|v 20
|y 2009
999 C 5 |1 I Roszko
|y 2015
|2 Crossref
|u Roszko I, Sepich D, Jessen JR, Chandrasekhar A, Solnica-Krezel L (2015) A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 142:2508–2520
999 C 5 |a 10.1038/26020
|9 -- missing cx lookup --
|1 K Sampath
|p 185 -
|2 Crossref
|u Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395:185–189
|t Nature
|v 395
|y 1998
999 C 5 |a 10.1016/j.devcel.2015.06.012
|9 -- missing cx lookup --
|1 E Scarpa
|p 421 -
|2 Crossref
|u Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R (2015) Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev Cell 34:421–434
|t Dev Cell
|v 34
|y 2015
999 C 5 |a 10.1242/dev.124.2.327
|9 -- missing cx lookup --
|1 AF Schier
|p 327 -
|2 Crossref
|u Schier AF, Neuhauss SC, Helde KA, Talbot WS, Driever W (1997) The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124:327–342
|t Development
|v 124
|y 1997
999 C 5 |a 10.1002/dvdy.10384
|9 -- missing cx lookup --
|1 S Scholpp
|p 313 -
|2 Crossref
|u Scholpp S, Brand M (2003) Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants. Dev Dyn 228:313–322
|t Dev Dyn
|v 228
|y 2003
999 C 5 |a 10.1242/dev.011494
|9 -- missing cx lookup --
|1 A Shimada
|p 281 -
|2 Crossref
|u Shimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, Kobayashi D, Takeda H (2008) Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development 135:281–290
|t Development
|v 135
|y 2008
999 C 5 |a 10.1242/dev.01247
|9 -- missing cx lookup --
|1 A Shkumatava
|p 3849 -
|2 Crossref
|u Shkumatava A, Fischer S, Müller F, Strähle U, Neumann CJ (2004) Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131:3849–3858
|t Development
|v 131
|y 2004
999 C 5 |a 10.1242/dev.116.4.901
|9 -- missing cx lookup --
|1 J Shih
|p 901 -
|2 Crossref
|u Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914
|t Development
|v 116
|y 1992
999 C 5 |a 10.1016/j.devcel.2013.01.016
|9 -- missing cx lookup --
|1 S Song
|p 486 -
|2 Crossref
|u Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W (2013) Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 24:486–501
|t Dev Cell
|v 24
|y 2013
999 C 5 |a 10.1371/journal.pone.0124633
|9 -- missing cx lookup --
|1 M Stemmer
|p e0124633 -
|2 Crossref
|u Stemmer M, Thumberger T, Del Sol KM, Wittbrodt J, Mateo JL (2015) CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10:e0124633
|t PLoS ONE
|v 10
|y 2015
999 C 5 |a 10.1242/dev.01812
|9 -- missing cx lookup --
|1 DL Stemple
|p 2503 -
|2 Crossref
|u Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512
|t Development
|v 132
|y 2005
999 C 5 |a 10.1242/dev.073007
|9 -- missing cx lookup --
|1 M Tada
|p 3897 -
|2 Crossref
|u Tada M, Heisenberg C-P (2012) Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139:3897–3904
|t Development
|v 139
|y 2012
999 C 5 |a 10.1016/j.ceb.2012.08.002
|9 -- missing cx lookup --
|1 E Theveneau
|p 677 -
|2 Crossref
|u Theveneau E, Mayor R (2012) Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 24:677–684
|t Curr Opin Cell Biol
|v 24
|y 2012
999 C 5 |a 10.1242/dev.00758
|9 -- missing cx lookup --
|1 F Ulrich
|p 5375 -
|2 Crossref
|u Ulrich F, Concha ML, Heid PJ, Voss E, Witzel S, Roehl H, Tada M, Wilson SW, Adams RJ, Soll DR, Heisenberg CP (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130:5375–5384
|t Development
|v 130
|y 2003
999 C 5 |a 10.1016/j.devcel.2005.08.011
|9 -- missing cx lookup --
|1 F Ulrich
|p 555 -
|2 Crossref
|u Ulrich F, Krieg M, Schötz EM, Link V, Castanon I, Schnabel V, Taubenberger A, Mueller D, Puech PH, Heisenberg CP (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell 9:555–564
|t Dev Cell
|v 9
|y 2005
999 C 5 |a 10.1038/sj.emboj.7600332
|9 -- missing cx lookup --
|1 F Unterseher
|p 3259 -
|2 Crossref
|u Unterseher F, Hefele JA, Giehl K, De Robertis EM, Wedlich D, Schambony A (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23:3259–3269
|t EMBO J
|v 23
|y 2004
999 C 5 |a 10.1016/j.bpj.2016.02.032
|9 -- missing cx lookup --
|1 DK Vig
|p 1469 -
|2 Crossref
|u Vig DK, Hamby AE, Wolgemuth CW (2016) On the quantification of cellular velocity fields. Biophys J 110:1469–1475
|t Biophys J
|v 110
|y 2016
999 C 5 |a 10.1242/dev.02347
|9 -- missing cx lookup --
|1 J Wang
|p 1767 -
|2 Crossref
|u Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A (2006) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778
|t Development
|v 133
|y 2006
999 C 5 |a 10.1242/dev.108.4.569
|9 -- missing cx lookup --
|1 RM Warga
|p 569 -
|2 Crossref
|u Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580
|t Development
|v 108
|y 1990
999 C 5 |a 10.1016/j.devcel.2011.10.013
|9 -- missing cx lookup --
|1 GF Weber
|p 104 -
|2 Crossref
|u Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115
|t Dev Cell
|v 22
|y 2012
999 C 5 |a 10.1038/s41467-018-03715-w
|9 -- missing cx lookup --
|1 MLK Williams
|p 1319 -
|2 Crossref
|u Williams MLK, Sawada A, Budine T, Yin C, Gontarz P, Solnica-Krezel L (2018) Gon4l regulates notochord boundary formation and cell polarity underlying axis extension by repressing adhesion genes. Nat Commun 9:1319
|t Nat Commun
|v 9
|y 2018
999 C 5 |a 10.1016/j.devcel.2007.10.016
|9 -- missing cx lookup --
|1 Y Yamanaka
|p 884 -
|2 Crossref
|u Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13:884–896
|t Dev Cell
|v 13
|y 2007
999 C 5 |a 10.1016/j.neuron.2007.08.020
|9 -- missing cx lookup --
|1 S Yasuda
|p 456 -
|2 Crossref
|u Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, De Robertis EM, Yamagata K (2007) Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 56:456–471
|t Neuron
|v 56
|y 2007
999 C 5 |a 10.1242/dev.000380
|9 -- missing cx lookup --
|1 P Ybot-Gonzalez
|p 789 -
|2 Crossref
|u Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799
|t Development
|v 134
|y 2007
999 C 5 |a 10.1242/dev.030601
|9 -- missing cx lookup --
|1 WW Yen
|p 2039 -
|2 Crossref
|u Yen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, Lu X, Sutherland A (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048
|t Development
|v 136
|y 2009
999 C 5 |a 10.1083/jcb.200704150
|9 -- missing cx lookup --
|1 C Yin
|p 221 -
|2 Crossref
|u Yin C, Kiskowski M, Pouille PA, Farge E, Solnica-Krezel L (2008) Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 180:221–232
|t J Cell Biol
|v 180
|y 2008


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21