000888496 001__ 888496 000888496 005__ 20220103172056.0 000888496 0247_ $$2doi$$a10.1016/j.snb.2020.128437 000888496 0247_ $$2ISSN$$a0925-4005 000888496 0247_ $$2ISSN$$a1873-3077 000888496 0247_ $$2Handle$$a2128/29604 000888496 0247_ $$2WOS$$aWOS:000562371000004 000888496 037__ $$aFZJ-2020-04960 000888496 082__ $$a620 000888496 1001_ $$0P:(DE-Juel1)178020$$aPeng, Ruiqin$$b0 000888496 245__ $$aBiomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media 000888496 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000888496 3367_ $$2DRIVER$$aarticle 000888496 3367_ $$2DataCite$$aOutput Types/Journal article 000888496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640274086_18668 000888496 3367_ $$2BibTeX$$aARTICLE 000888496 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888496 3367_ $$00$$2EndNote$$aJournal Article 000888496 520__ $$aBioinspired molecular complexes that mimic the enzymatic catalysis of redox transformations offer a versatile platform for the development of non-enzymatic mediatorless sensors with high sensitivity, selectivity, and robustness without the use of precious metals. The aim of this study was to prepare and investigate biomimetic sensors based on the electrocatalytic reduction of hydrogen peroxide and oxygen by a series of immobilized complexes of iron and manganese with porphyrin macrocycles for the detection of hydrogen peroxide and glucose. The influence of substitution of the macroheterocyclic ligand, composition of the adsorption solution, Nafion membrane, and amino acids on the properties of the sensors was studied. Optimized sensor function is based on the electrogenerated reduced form of Mn(II) meso-tetra(N-methyl-4-pyridyl) porphyrin as a catalyst and allows high sensitivity of the hydrogen peroxide detection of 1.8 A M−1 cm−2 and 0.071 A M−1 cm−2 to be achieved in the lower and higher concentration ranges, respectively, with a low detection limit of 5⋅10−7 M at physiological pH 7.4 and in the presence of oxygen. The MnTMPyP electrode was investigated as an electrochemical transducer in the glucose-oxidase-based biosensor. The sensors were successfully applied for the detection of hydrogen peroxide and glucose in human serum samples. Along with a simple fabrication procedure and robustness of the sensor, the biomimetic electrocatalytic properties of the MnTMPyP complex facilitate excellent performance of the proposed sensors for hydrogen peroxide and glucose determination in biological media, emphasizing the importance of bioinspired electrocatalytic metalloporphyrin complexes for the development of sensors and point-of-care devices. 000888496 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000888496 588__ $$aDataset connected to CrossRef 000888496 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b1 000888496 7001_ $$0P:(DE-HGF)0$$aErmolenko, Yuri$$b2 000888496 7001_ $$0P:(DE-Juel1)128710$$aMourzina, Youlia$$b3$$eCorresponding author 000888496 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2020.128437$$gVol. 321, p. 128437 -$$p128437 -$$tSensors and actuators <Lausanne> / B$$v321$$x0925-4005$$y2020 000888496 8564_ $$uhttps://juser.fz-juelich.de/record/888496/files/Mourzina_SAB%202020.pdf$$yPublished on 2020-07-16. Available in OpenAccess from 2022-07-16. 000888496 8564_ $$uhttps://juser.fz-juelich.de/record/888496/files/Mourzina_SAB_SI_2020.pdf$$yRestricted 000888496 909CO $$ooai:juser.fz-juelich.de:888496$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178020$$aForschungszentrum Jülich$$b0$$kFZJ 000888496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b1$$kFZJ 000888496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich$$b3$$kFZJ 000888496 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000888496 9141_ $$y2020 000888496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-25 000888496 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000888496 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000888496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT B-CHEM : 2018$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSENSOR ACTUAT B-CHEM : 2018$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25 000888496 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger 000888496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25 000888496 920__ $$lyes 000888496 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0 000888496 980__ $$ajournal 000888496 980__ $$aVDB 000888496 980__ $$aUNRESTRICTED 000888496 980__ $$aI:(DE-Juel1)IBI-3-20200312 000888496 9801_ $$aFullTexts