000888497 001__ 888497 000888497 005__ 20210104120155.0 000888497 0247_ $$2doi$$a10.1016/j.jelechem.2020.114159 000888497 0247_ $$2ISSN$$a0022-0728 000888497 0247_ $$2ISSN$$a0368-1874 000888497 0247_ $$2ISSN$$a1572-6657 000888497 0247_ $$2ISSN$$a1873-2569 000888497 0247_ $$2ISSN$$a2590-2946 000888497 0247_ $$2ISSN$$a2590-2954 000888497 0247_ $$2Handle$$a2128/26605 000888497 0247_ $$2altmetric$$aaltmetric:79993435 000888497 0247_ $$2WOS$$aWOS:000534394000006 000888497 037__ $$aFZJ-2020-04961 000888497 082__ $$a620 000888497 1001_ $$0P:(DE-Juel1)128710$$aMourzina, Youlia$$b0$$eCorresponding author 000888497 245__ $$aElectrochemical properties and biomimetic activity of water-soluble meso-substituted Mn(III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide 000888497 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020 000888497 3367_ $$2DRIVER$$aarticle 000888497 3367_ $$2DataCite$$aOutput Types/Journal article 000888497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609246671_11204 000888497 3367_ $$2BibTeX$$aARTICLE 000888497 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888497 3367_ $$00$$2EndNote$$aJournal Article 000888497 520__ $$aThe aim of this study was to investigate biomimetic activity of water-soluble manganese porphyrin complexes with a series of meso-substituents of the porphyrin macrocycle in the electrocatalytic reduction of hydrogen peroxide in aqueous solutions and to obtain information on possible intermediates, processes, and mechanisms. Mn porphyrins were compared in the process of the electrocatalytic reduction of hydrogen peroxide at pH 4, 7.4, and 10 in the deoxygenated solutions and in the presence of oxygen. The highest sensitivity, defined as the reduction current increase in relation to the concentration of hydrogen peroxide, was found in the case of Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin, MnTMPyP, in alkaline 2.9·10−2 A M−1 and acidic 1.6·10−2 A M−1 solutions in the presence of oxygen. The reduction currents at pH 7.4, 10, and 4 in the presence of H2O2 were about 4, 7, and 12 times higher, respectively, in the solutions with the MnTMPyP complex than those at a GCE without a porphyrin complex in the solution. The electrocatalytic reduction of hydrogen peroxide occurs in parallel with an oxidative degradation of the porphyrin catalyst depending on the conditions of the experiment and was most significant in the presence of oxygen. The effect of the functional substituents at the meso-positions of a porphyrin ligand on the electrocatalytic activity of the water-soluble Mn(III) porphyrins complexes is discussed and reaction mechanisms are proposed. 000888497 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0 000888497 588__ $$aDataset connected to CrossRef 000888497 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b1 000888497 773__ $$0PERI:(DE-600)1491150-4$$a10.1016/j.jelechem.2020.114159$$gVol. 866, p. 114159 -$$p114159 -$$tJournal of electroanalytical chemistry$$v866$$x1572-6657$$y2020 000888497 8564_ $$uhttps://juser.fz-juelich.de/record/888497/files/Mourzina_Manuscript%20JEAC%202020.pdf$$yPublished on 2020-04-17. Available in OpenAccess from 2021-04-17. 000888497 8564_ $$uhttps://juser.fz-juelich.de/record/888497/files/Mourzina_Manuscript_JEAC_SI.pdf$$yRestricted 000888497 909CO $$ooai:juser.fz-juelich.de:888497$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich$$b0$$kFZJ 000888497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b1$$kFZJ 000888497 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000888497 9141_ $$y2020 000888497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-20 000888497 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000888497 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000888497 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROANAL CHEM : 2018$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-20 000888497 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-20$$wger 000888497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20 000888497 920__ $$lyes 000888497 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0 000888497 980__ $$ajournal 000888497 980__ $$aVDB 000888497 980__ $$aUNRESTRICTED 000888497 980__ $$aI:(DE-Juel1)IBI-3-20200312 000888497 9801_ $$aFullTexts