000888498 001__ 888498
000888498 005__ 20230113085402.0
000888498 0247_ $$2doi$$a10.1021/acs.nanolett.0c01569
000888498 0247_ $$2ISSN$$a1530-6984
000888498 0247_ $$2ISSN$$a1530-6992
000888498 0247_ $$2pmid$$a32520573
000888498 0247_ $$2WOS$$aWOS:000548893200072
000888498 037__ $$aFZJ-2020-04962
000888498 082__ $$a660
000888498 1001_ $$0P:(DE-Juel1)172013$$aLenyk, Bohdan$$b0
000888498 245__ $$aSurface Plasmon-Enhanced Switching Kinetics of Molecular Photochromic Films on Gold Nanohole Arrays
000888498 260__ $$aWashington, DC$$bACS Publ.$$c2020
000888498 3367_ $$2DRIVER$$aarticle
000888498 3367_ $$2DataCite$$aOutput Types/Journal article
000888498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671630778_30090
000888498 3367_ $$2BibTeX$$aARTICLE
000888498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888498 3367_ $$00$$2EndNote$$aJournal Article
000888498 500__ $$aKein Post-print vorhanden
000888498 520__ $$aDiarylethene molecules are discussed as possible optical switches, which can reversibly transition between completely conjugated (closed) and nonconjugated (open) forms with different electrical conductance and optical absorbance, by exposure to UV and visible light. However, in general the opening reaction exhibits much lower quantum yield than the closing process, hindering their usage in optoelectronic devices. To enhance the opening process, which is supported by visible light, we employ the plasmonic field enhancement of gold films perforated with nanoholes. We show that gold nanohole arrays reveal strong optical transmission in the visible range (∼60%) and pronounced enhancement of field intensities, resulting in around 50% faster switching kinetics of the molecular species in comparison with quartz substrates. The experimental UV–vis measurements are verified with finite-difference time-domain simulation that confirm the obtained results. Thus, we propose gold nanohole arrays as transparent and conductive plasmonic material that accelerates visible-light-triggered chemical reactions including molecular switching.
000888498 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000888498 588__ $$aDataset connected to CrossRef
000888498 7001_ $$0P:(DE-Juel1)145468$$aSchöps, Volker$$b1
000888498 7001_ $$0P:(DE-HGF)0$$aBoneberg, Johannes$$b2
000888498 7001_ $$0P:(DE-HGF)0$$aKabdulov, Mikhail$$b3
000888498 7001_ $$0P:(DE-HGF)0$$aHuhn, Thomas$$b4
000888498 7001_ $$00000-0003-3788-6979$$aScheer, Elke$$b5
000888498 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6
000888498 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b7
000888498 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.0c01569$$gVol. 20, no. 7, p. 5243 - 5250$$n7$$p5243 - 5250$$tNano letters$$v20$$x1530-6992$$y2020
000888498 8564_ $$uhttps://juser.fz-juelich.de/record/888498/files/acs.nanolett.0c01569.pdf$$yRestricted
000888498 909CO $$ooai:juser.fz-juelich.de:888498$$pVDB
000888498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172013$$aForschungszentrum Jülich$$b0$$kFZJ
000888498 9101_ $$0I:(DE-HGF)0$$60000-0003-3788-6979$$aExternal Institute$$b5$$kExtern
000888498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000888498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b7$$kFZJ
000888498 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000888498 9141_ $$y2020
000888498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000888498 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-09-11
000888498 920__ $$lyes
000888498 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000888498 980__ $$ajournal
000888498 980__ $$aVDB
000888498 980__ $$aI:(DE-Juel1)IBI-3-20200312
000888498 980__ $$aUNRESTRICTED