000888499 001__ 888499
000888499 005__ 20210130010954.0
000888499 0247_ $$2doi$$a10.25493/Z6NG-4MU
000888499 037__ $$aFZJ-2020-04963
000888499 1001_ $$0P:(DE-Juel1)171890$$aKiwitz, Kai$$b0$$eCorresponding author
000888499 245__ $$aFilter Activations of Convolutional Neuronal Networks Used in Cytoarchitectonic Brain Mapping
000888499 260__ $$bEBRAINS$$c2020
000888499 3367_ $$2BibTeX$$aMISC
000888499 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1607349251_25354
000888499 3367_ $$026$$2EndNote$$aChart or Table
000888499 3367_ $$2DataCite$$aDataset
000888499 3367_ $$2ORCID$$aDATA_SET
000888499 3367_ $$2DINI$$aResearchData
000888499 520__ $$aWe studied the internal structure of two specific Convolutional Neural Networks (CNNs) which were trained to segment the primary (hOc1, V1) and secondary visual cortex (hOc2, V2) in microscopic scans of brain tissue sections with a resolution of 1 micrometer. All tissue sections correspond to those of the BigBrain dataset ([Amunts et al., 2013](https://science.sciencemag.org/content/340/6139/1472)). To analyze the internal feature representations learned by the model, 5184 filter activations from the batch-normalized output of each Rectified Linear Unit (ReLU) of the CNNs were calculated for section number 1021 of the histological stack. We described and analyzed these filter activations to better understand the internal feature representations of the trained networks. This enables a direct comparison with the underlying histology and a direct assessment of cytoarchitectonic features reflected inside the networks. **Additional information:** The corresponding reference delineations were published in: Kiwitz et al. (2019) [DOI: 10.25493/3GSV-T4A](https://kg.ebrains.eu/search/instances/Dataset/87c6dea7-bdf7-4049-9975-6a9925df393f) Kiwitz et al. (2019) [DOI: 10.25493/8MKD-D77](https://kg.ebrains.eu/search/instances/Dataset/02b56db7-a083-44f3-91dc-72bb67f3fd0a)
000888499 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000888499 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000888499 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000888499 588__ $$aDataset connected to DataCite
000888499 7001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b1
000888499 7001_ $$0P:(DE-Juel1)167110$$aSpitzer, Hannah$$b2
000888499 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b3
000888499 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b4
000888499 773__ $$a10.25493/Z6NG-4MU
000888499 909CO $$ooai:juser.fz-juelich.de:888499$$pec_fundedresources$$pVDB$$popenaire
000888499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171890$$aForschungszentrum Jülich$$b0$$kFZJ
000888499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b1$$kFZJ
000888499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b3$$kFZJ
000888499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b4$$kFZJ
000888499 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000888499 9141_ $$y2020
000888499 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000888499 980__ $$adataset
000888499 980__ $$aVDB
000888499 980__ $$aI:(DE-Juel1)INM-1-20090406
000888499 980__ $$aUNRESTRICTED