001     888499
005     20210130010954.0
024 7 _ |a 10.25493/Z6NG-4MU
|2 doi
037 _ _ |a FZJ-2020-04963
100 1 _ |a Kiwitz, Kai
|0 P:(DE-Juel1)171890
|b 0
|e Corresponding author
245 _ _ |a Filter Activations of Convolutional Neuronal Networks Used in Cytoarchitectonic Brain Mapping
260 _ _ |c 2020
|b EBRAINS
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1607349251_25354
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a We studied the internal structure of two specific Convolutional Neural Networks (CNNs) which were trained to segment the primary (hOc1, V1) and secondary visual cortex (hOc2, V2) in microscopic scans of brain tissue sections with a resolution of 1 micrometer. All tissue sections correspond to those of the BigBrain dataset ([Amunts et al., 2013](https://science.sciencemag.org/content/340/6139/1472)). To analyze the internal feature representations learned by the model, 5184 filter activations from the batch-normalized output of each Rectified Linear Unit (ReLU) of the CNNs were calculated for section number 1021 of the histological stack. We described and analyzed these filter activations to better understand the internal feature representations of the trained networks. This enables a direct comparison with the underlying histology and a direct assessment of cytoarchitectonic features reflected inside the networks. **Additional information:** The corresponding reference delineations were published in: Kiwitz et al. (2019) [DOI: 10.25493/3GSV-T4A](https://kg.ebrains.eu/search/instances/Dataset/87c6dea7-bdf7-4049-9975-6a9925df393f) Kiwitz et al. (2019) [DOI: 10.25493/8MKD-D77](https://kg.ebrains.eu/search/instances/Dataset/02b56db7-a083-44f3-91dc-72bb67f3fd0a)
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Schiffer, Christian
|0 P:(DE-Juel1)170068
|b 1
700 1 _ |a Spitzer, Hannah
|0 P:(DE-Juel1)167110
|b 2
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 3
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 4
773 _ _ |a 10.25493/Z6NG-4MU
909 C O |o oai:juser.fz-juelich.de:888499
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171890
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165746
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131631
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21