000888507 001__ 888507
000888507 005__ 20210130010958.0
000888507 0247_ $$2doi$$a10.3390/ma13112577
000888507 0247_ $$2Handle$$a2128/26390
000888507 0247_ $$2pmid$$a32516935
000888507 0247_ $$2WOS$$aWOS:000551495800153
000888507 037__ $$aFZJ-2020-04971
000888507 082__ $$a600
000888507 1001_ $$0P:(DE-Juel1)168271$$aLiang, Yuanying$$b0
000888507 245__ $$aLabel-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors
000888507 260__ $$aBasel$$bMDPI$$c2020
000888507 3367_ $$2DRIVER$$aarticle
000888507 3367_ $$2DataCite$$aOutput Types/Journal article
000888507 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607417702_756
000888507 3367_ $$2BibTeX$$aARTICLE
000888507 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888507 3367_ $$00$$2EndNote$$aJournal Article
000888507 520__ $$aThe detection of chemical messenger molecules, such as neurotransmitters in nervous systems, demands high sensitivity to measure small variations, selectivity to eliminate interferences from analogues, and compliant devices to be minimally invasive to soft tissue. Here, an organic electrochemical transistor (OECT) embedded in a flexible polyimide substrate is utilized as transducer to realize a highly sensitive dopamine aptasensor. A split aptamer is tethered to a gold gate electrode and the analyte binding can be detected optionally either via an amperometric or a potentiometric transducer principle. The amperometric sensor can detect dopamine with a limit of detection of 1 μM, while the novel flexible OECT-based biosensor exhibits an ultralow detection limit down to the concentration of 0.5 fM, which is lower than all previously reported electrochemical sensors for dopamine detection. The low detection limit can be attributed to the intrinsic amplification properties of OECTs. Furthermore, a significant response to dopamine inputs among interfering analogues hallmarks the selective detection capabilities of this sensor. The high sensitivity and selectivity, as well as the flexible properties of the OECT-based aptasensor, are promising features for their integration in neuronal probes for the in vitro or in vivo detection of neurochemical signals. 
000888507 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000888507 588__ $$aDataset connected to CrossRef
000888507 7001_ $$0P:(DE-Juel1)176886$$aGuo, Ting$$b1
000888507 7001_ $$0P:(DE-Juel1)173933$$aZhou, Lei$$b2
000888507 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b3
000888507 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4$$eCorresponding author
000888507 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma13112577$$gVol. 13, no. 11, p. 2577 -$$n11$$p2577 -$$tMaterials$$v13$$x1996-1944$$y2020
000888507 8564_ $$uhttps://juser.fz-juelich.de/record/888507/files/materials-13-02577.pdf$$yOpenAccess
000888507 909CO $$ooai:juser.fz-juelich.de:888507$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168271$$aForschungszentrum Jülich$$b0$$kFZJ
000888507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176886$$aForschungszentrum Jülich$$b1$$kFZJ
000888507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173933$$aForschungszentrum Jülich$$b2$$kFZJ
000888507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
000888507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
000888507 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000888507 9141_ $$y2020
000888507 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000888507 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888507 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2018$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888507 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-04
000888507 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000888507 920__ $$lyes
000888507 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000888507 980__ $$ajournal
000888507 980__ $$aVDB
000888507 980__ $$aUNRESTRICTED
000888507 980__ $$aI:(DE-Juel1)IBI-3-20200312
000888507 9801_ $$aFullTexts