Hauptseite > Publikationsdatenbank > Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors > print |
001 | 888507 | ||
005 | 20210130010958.0 | ||
024 | 7 | _ | |a 10.3390/ma13112577 |2 doi |
024 | 7 | _ | |a 2128/26390 |2 Handle |
024 | 7 | _ | |a 32516935 |2 pmid |
024 | 7 | _ | |a WOS:000551495800153 |2 WOS |
037 | _ | _ | |a FZJ-2020-04971 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Liang, Yuanying |0 P:(DE-Juel1)168271 |b 0 |
245 | _ | _ | |a Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors |
260 | _ | _ | |a Basel |c 2020 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607417702_756 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The detection of chemical messenger molecules, such as neurotransmitters in nervous systems, demands high sensitivity to measure small variations, selectivity to eliminate interferences from analogues, and compliant devices to be minimally invasive to soft tissue. Here, an organic electrochemical transistor (OECT) embedded in a flexible polyimide substrate is utilized as transducer to realize a highly sensitive dopamine aptasensor. A split aptamer is tethered to a gold gate electrode and the analyte binding can be detected optionally either via an amperometric or a potentiometric transducer principle. The amperometric sensor can detect dopamine with a limit of detection of 1 μM, while the novel flexible OECT-based biosensor exhibits an ultralow detection limit down to the concentration of 0.5 fM, which is lower than all previously reported electrochemical sensors for dopamine detection. The low detection limit can be attributed to the intrinsic amplification properties of OECTs. Furthermore, a significant response to dopamine inputs among interfering analogues hallmarks the selective detection capabilities of this sensor. The high sensitivity and selectivity, as well as the flexible properties of the OECT-based aptasensor, are promising features for their integration in neuronal probes for the in vitro or in vivo detection of neurochemical signals. |
536 | _ | _ | |a 523 - Controlling Configuration-Based Phenomena (POF3-523) |0 G:(DE-HGF)POF3-523 |c POF3-523 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Guo, Ting |0 P:(DE-Juel1)176886 |b 1 |
700 | 1 | _ | |a Zhou, Lei |0 P:(DE-Juel1)173933 |b 2 |
700 | 1 | _ | |a Offenhäusser, Andreas |0 P:(DE-Juel1)128713 |b 3 |
700 | 1 | _ | |a Mayer, Dirk |0 P:(DE-Juel1)128707 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.3390/ma13112577 |g Vol. 13, no. 11, p. 2577 - |0 PERI:(DE-600)2487261-1 |n 11 |p 2577 - |t Materials |v 13 |y 2020 |x 1996-1944 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888507/files/materials-13-02577.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888507 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168271 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176886 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173933 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128707 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |2 G:(DE-HGF)POF3-500 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATERIALS : 2018 |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-09-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-04 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|