000888528 001__ 888528
000888528 005__ 20240712084619.0
000888528 0247_ $$2doi$$a10.1016/j.anucene.2020.107887
000888528 0247_ $$2ISSN$$a0306-4549
000888528 0247_ $$2ISSN$$a1873-2100
000888528 0247_ $$2Handle$$a2128/30910
000888528 0247_ $$2WOS$$aWOS:000595796000019
000888528 037__ $$aFZJ-2020-04992
000888528 082__ $$a530
000888528 1001_ $$0P:(DE-Juel1)143718$$aKlauck, M.$$b0
000888528 245__ $$aEffect of par deactivation by carbon monoxide in the late phase of a severe accident
000888528 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000888528 3367_ $$2DRIVER$$aarticle
000888528 3367_ $$2DataCite$$aOutput Types/Journal article
000888528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648221389_15883
000888528 3367_ $$2BibTeX$$aARTICLE
000888528 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888528 3367_ $$00$$2EndNote$$aJournal Article
000888528 520__ $$aPassive auto-catalytic recombiners (PARs) are installed inside the containments of water-cooled reactors worldwide in order to mitigate the risk of hydrogen explosions in the course of an accident. After failure of the reactor pressure vessel (ex-vessel phase of a severe accident), the gas mixture released during the molten core-concrete interaction (MCCI) includes the flammable components hydrogen and carbon monoxide. Carbon monoxide is well-known as potential catalyst poison due to its strong adsorption properties which ultimately may prevent hydrogen and oxygen reaching active reaction sites. While high operational temperatures support the additional conversion of carbon monoxide to carbon dioxide inside the recombiner, experiments have revealed that catalyst deactivation by carbon monoxide is possible at lower oxygen concentrations. Based on experimental data, a correlation was derived indicating the catalyst poisoning temperature as a function of the gas composition. After enhancing the in-house REKO-DIREKT code according to the experimental data base, a COCOSYS accident simulation based on a generic accident scenario has been performed. The simulation results predict that the PARs in relevant regions will stop operation approx. 3.4 h after MCCI starts. From that time on, hydrogen and carbon monoxide are released from MCCI without available mitigation measure. As a consequence, the hydrogen concentration reaches significantly higher values at the end of the calculated scenario when compared with calculations without taking into account PAR poisoning. The present study demonstrates that carbon monoxide could significantly affect PAR operation in the course of a severe accident involving MCCI. As a consequence, substantial enhancement on all disciplines – experimental data, PAR models, and accident scenario assessment – is required in order to further detail the present findings.
000888528 536__ $$0G:(DE-HGF)POF4-1422$$a1422 - Beyond Design Basis Accidents and Emergency Management (POF4-142)$$cPOF4-142$$fPOF IV$$x0
000888528 588__ $$aDataset connected to CrossRef
000888528 7001_ $$0P:(DE-Juel1)130400$$aReinecke, E.-A.$$b1$$eCorresponding author
000888528 7001_ $$0P:(DE-Juel1)130314$$aAllelein, H.-J.$$b2
000888528 773__ $$0PERI:(DE-600)2000768-1$$a10.1016/j.anucene.2020.107887$$gVol. 151, p. 107887 -$$p107887 -$$tAnnals of nuclear energy$$v151$$x0306-4549$$y2021
000888528 8564_ $$uhttps://juser.fz-juelich.de/record/888528/files/ANUCENE-D-19-00906_R1.pdf$$yOpenAccess
000888528 8564_ $$uhttps://juser.fz-juelich.de/record/888528/files/AnnNuclEne151_Klauck_etal_2021.pdf$$yRestricted
000888528 909CO $$ooai:juser.fz-juelich.de:888528$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143718$$aForschungszentrum Jülich$$b0$$kFZJ
000888528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130400$$aForschungszentrum Jülich$$b1$$kFZJ
000888528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130314$$aForschungszentrum Jülich$$b2$$kFZJ
000888528 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1422$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
000888528 9141_ $$y2022
000888528 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN NUCL ENERGY : 2018$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888528 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000888528 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000888528 920__ $$lyes
000888528 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000888528 9801_ $$aFullTexts
000888528 980__ $$ajournal
000888528 980__ $$aVDB
000888528 980__ $$aUNRESTRICTED
000888528 980__ $$aI:(DE-Juel1)IEK-6-20101013
000888528 981__ $$aI:(DE-Juel1)IFN-2-20101013