| Home > Publications database > Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer > print |
| 001 | 888532 | ||
| 005 | 20210130011007.0 | ||
| 024 | 7 | _ | |a 2128/26385 |2 Handle |
| 037 | _ | _ | |a FZJ-2020-04996 |
| 100 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS) |g IGARSS 2020 |c Online event |d 2020-09-27 - 2020-10-02 |w Online event |
| 245 | _ | _ | |a Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer |
| 260 | _ | _ | |c 2020 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1607362071_3541 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a Support Vector Machine (SVM) is a popular supervised Machine Learning (ML) method that is widely used for classification and regression problems. Recently, a method to train SVMs on a D-Wave 2000Q Quantum Annealer (QA) was proposed for binary classification of some biological data. First, ensembles of weak quantum SVMs are generated by training each classifier on a disjoint training subset that can be fit into the QA. Then, the computed weak solutions are fused for making predictions on unseen data. In this work, the classification of Remote Sensing (RS) multispectral images with SVMs trained on a QA is discussed. Furthermore, an open code repository is released to facilitate an early entry into the practical application of QA, a new disruptive compute technology. |
| 536 | _ | _ | |a 512 - Data-Intensive Science and Federated Computing (POF3-512) |0 G:(DE-HGF)POF3-512 |c POF3-512 |f POF III |x 0 |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
| 700 | 1 | _ | |a Willsch, Dennis |0 P:(DE-Juel1)167542 |b 1 |
| 700 | 1 | _ | |a Willsch, Madita |0 P:(DE-Juel1)167543 |b 2 |
| 700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |
| 700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/888532/files/Cavallaro_IGARSS_2020.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:888532 |p openaire |p open_access |p VDB |p driver |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171343 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167542 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)167543 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-512 |2 G:(DE-HGF)POF3-500 |v Data-Intensive Science and Federated Computing |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|