000888533 001__ 888533
000888533 005__ 20210130011008.0
000888533 0247_ $$2doi$$a10.1039/C9TC05928H
000888533 0247_ $$2ISSN$$a2050-7526
000888533 0247_ $$2ISSN$$a2050-7534
000888533 0247_ $$2Handle$$a2128/26389
000888533 0247_ $$2altmetric$$aaltmetric:75009169
000888533 0247_ $$2WOS$$aWOS:000520979400022
000888533 037__ $$aFZJ-2020-04997
000888533 082__ $$a530
000888533 1001_ $$0P:(DE-HGF)0$$aQin, Guangzhao$$b0$$eCorresponding author
000888533 245__ $$aGiant effect of spin–lattice coupling on the thermal transport in two-dimensional ferromagnetic CrI 3
000888533 260__ $$aLondon Â[u.a.]Â$$bRSC$$c2020
000888533 3367_ $$2DRIVER$$aarticle
000888533 3367_ $$2DataCite$$aOutput Types/Journal article
000888533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607417211_9746
000888533 3367_ $$2BibTeX$$aARTICLE
000888533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888533 3367_ $$00$$2EndNote$$aJournal Article
000888533 520__ $$aHigh performance thermal management is of great significance to the data security and working stability of magnetic devices with broad applications from sensing to data storage and spintronics, where there would exist coupling between the spin and phonon (lattice vibrations). However, the knowledge of the spin effect on thermal transport is lacking. Here, we report that the thermal conductivity of monolayer CrI3 is more than two orders of magnitude enhanced by the spin–lattice coupling. Fundamental understanding is achieved by analyzing the coupling among electronic, magnetic and phononic properties based on the orbital projected electronic structure and spin density. The bond angles and atomic positions are substantially changed due to the spin–lattice coupling, making the structure more stiff and more symmetric, and lead to the weaker phonon anharmonicity, and thus the enhanced thermal conductivity. This study uncovers the giant effect of spin–lattice coupling on the thermal transport, which would deepen our understanding on thermal transport and shed light on future research of thermal transport in magnetic materials.
000888533 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000888533 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000888533 588__ $$aDataset connected to CrossRef
000888533 7001_ $$00000-0002-3306-3994$$aWang, Huimin$$b1
000888533 7001_ $$0P:(DE-Juel1)174385$$aZhang, Lichuan$$b2$$ufzj
000888533 7001_ $$0P:(DE-HGF)0$$aQin, Zhenzhen$$b3$$eCorresponding author
000888533 7001_ $$0P:(DE-HGF)0$$aHu, Ming$$b4$$eCorresponding author
000888533 773__ $$0PERI:(DE-600)2702245-6$$a10.1039/C9TC05928H$$gVol. 8, no. 10, p. 3520 - 3526$$n10$$p3520 - 3526$$tJournal of materials chemistry / C$$v8$$x2050-7534$$y2020
000888533 8564_ $$uhttps://juser.fz-juelich.de/record/888533/files/c9tc05928h.pdf
000888533 8564_ $$uhttps://juser.fz-juelich.de/record/888533/files/article.pdf$$yPublished on 2020-02-04. Available in OpenAccess from 2021-02-04.
000888533 909CO $$ooai:juser.fz-juelich.de:888533$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174385$$aForschungszentrum Jülich$$b2$$kFZJ
000888533 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000888533 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000888533 9141_ $$y2020
000888533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM C : 2018$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM C : 2018$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-06$$wger
000888533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-06$$wger
000888533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000888533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000888533 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000888533 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000888533 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000888533 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000888533 980__ $$ajournal
000888533 980__ $$aVDB
000888533 980__ $$aUNRESTRICTED
000888533 980__ $$aI:(DE-Juel1)IAS-1-20090406
000888533 980__ $$aI:(DE-Juel1)PGI-1-20110106
000888533 980__ $$aI:(DE-82)080009_20140620
000888533 980__ $$aI:(DE-82)080012_20140620
000888533 9801_ $$aFullTexts