000888536 001__ 888536
000888536 005__ 20210130011010.0
000888536 0247_ $$2doi$$a10.1038/s41598-020-75650-0
000888536 0247_ $$2Handle$$a2128/26407
000888536 0247_ $$2pmid$$a33127989
000888536 0247_ $$2WOS$$aWOS:000591917600027
000888536 037__ $$aFZJ-2020-05000
000888536 041__ $$aEnglish
000888536 082__ $$a600
000888536 1001_ $$0P:(DE-HGF)0$$aLi, Yuan$$b0
000888536 245__ $$aWhen a foreign gene meets its native counterpart: computational biophysics analysis of two PgiC loci in the grass Festuca ovina
000888536 260__ $$aLondon$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000888536 3367_ $$2DRIVER$$aarticle
000888536 3367_ $$2DataCite$$aOutput Types/Journal article
000888536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607420735_9746
000888536 3367_ $$2BibTeX$$aARTICLE
000888536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888536 3367_ $$00$$2EndNote$$aJournal Article
000888536 520__ $$aDuplicative horizontal gene transfer may bring two previously separated homologous genes together, which may raise questions about the interplay between the gene products. One such gene pair is the “native” PgiC1 and “foreign” PgiC2 in the perennial grass Festuca ovina. Both PgiC1 and PgiC2 encode cytosolic phosphoglucose isomerase, a dimeric enzyme whose proper binding is functionally essential. Here, we use biophysical simulations to explore the inter-monomer binding of the two homodimers and the heterodimer that can be produced by PgiC1 and PgiC2 in F. ovina. Using simulated native-state ensembles, we examine the structural properties and binding tightness of the dimers. In addition, we investigate their ability to withstand dissociation when pulled by a force. Our results suggest that the inter-monomer binding is tighter in the PgiC2 than the PgiC1 homodimer, which could explain the more frequent occurrence of the foreign PgiC2 homodimer in dry habitats. We further find that the PgiC1 and PgiC2 monomers are compatible with heterodimer formation; the computed binding tightness is comparable to that of the PgiC1 homodimer. Enhanced homodimer stability and capability of heterodimer formation with PgiC1 are properties of PgiC2 that may contribute to the retaining of the otherwise redundant PgiC2 gene.
000888536 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888536 588__ $$aDataset connected to CrossRef
000888536 7001_ $$0P:(DE-Juel1)132590$$aMohanty, Sandipan$$b1
000888536 7001_ $$0P:(DE-HGF)0$$aNilsson, Daniel$$b2
000888536 7001_ $$0P:(DE-HGF)0$$aHansson, Bengt$$b3
000888536 7001_ $$0P:(DE-HGF)0$$aMao, Kangshan$$b4
000888536 7001_ $$0P:(DE-HGF)0$$aIrbäck, Anders$$b5$$eCorresponding author
000888536 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-75650-0$$gVol. 10, no. 1, p. 18752$$n1$$p18752$$tScientific reports$$v10$$x2045-2322$$y2020
000888536 8564_ $$uhttps://juser.fz-juelich.de/record/888536/files/s41598-020-75650-0.pdf$$yOpenAccess
000888536 909CO $$ooai:juser.fz-juelich.de:888536$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132590$$aForschungszentrum Jülich$$b1$$kFZJ
000888536 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888536 9141_ $$y2020
000888536 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888536 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000888536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000888536 920__ $$lyes
000888536 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000888536 980__ $$ajournal
000888536 980__ $$aVDB
000888536 980__ $$aUNRESTRICTED
000888536 980__ $$aI:(DE-Juel1)JSC-20090406
000888536 9801_ $$aFullTexts