000888542 001__ 888542
000888542 005__ 20240619092045.0
000888542 0247_ $$2doi$$a10.1021/acs.macromol.0c00963
000888542 0247_ $$2ISSN$$a0024-9297
000888542 0247_ $$2ISSN$$a1520-5835
000888542 0247_ $$2Handle$$a2128/26623
000888542 0247_ $$2altmetric$$aaltmetric:86660999
000888542 0247_ $$2WOS$$aWOS:000562138100059
000888542 037__ $$aFZJ-2020-05006
000888542 082__ $$a540
000888542 1001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b0
000888542 245__ $$aMolecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering
000888542 260__ $$aWashington, DC$$bSoc.$$c2020
000888542 3367_ $$2DRIVER$$aarticle
000888542 3367_ $$2DataCite$$aOutput Types/Journal article
000888542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609252736_9888
000888542 3367_ $$2BibTeX$$aARTICLE
000888542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888542 3367_ $$00$$2EndNote$$aJournal Article
000888542 520__ $$aQuasielastic neutron scattering by employing a combination of time-of-flight and backscattering techniques is carried out to explore the molecular mobility of a polymer of intrinsic microporosity (PIM-1) on microscopic timescales in comparison with a high-performance polyimide. Molecular fluctuations can change the structure of the temporary network of micropores and open or close pathways for gas molecules. Therefore, the investigation might help to understand the selectivity of PIMs in gas separation processes. The performed neutron scattering experiments provide evidence for a low-temperature relaxation process, which was assigned to methyl group rotation. This methyl group rotation was analyzed in terms of jump diffusion in a threefold potential. The analysis results in a fraction of methyl groups, which are immobilized. For PIM-1, it was found that the fraction of immobilized methyl groups decreases with increasing temperature up to 350 K. At higher temperatures, the number of immobilized methyl group increases gain due to an underlying relaxation process. This motional process on a somewhat larger length scale might lead to a reversible structural rearrangement, which partially hinders the strongly localized methyl group rotation. In addition, it was found that the activation energies for the methyl group rotation for PIM-1 and the polyimide are significantly higher than that for conventional polymers.
000888542 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000888542 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x1
000888542 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000888542 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x3
000888542 588__ $$aDataset connected to CrossRef
000888542 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000888542 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000888542 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000888542 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eTOFTOF: Cold neutron time-of-flight spectrometer $$fNL2au$$x1
000888542 7001_ $$0P:(DE-HGF)0$$aLohstroh, Wiebke$$b1
000888542 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b2
000888542 7001_ $$0P:(DE-HGF)0$$aHarrison, Wayne J.$$b3
000888542 7001_ $$00000-0003-3606-1158$$aBudd, Peter M.$$b4
000888542 7001_ $$00000-0001-9753-345X$$aBöhning, Martin$$b5
000888542 7001_ $$00000-0003-4330-9107$$aSchönhals, Andreas$$b6$$eCorresponding author
000888542 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.0c00963$$gVol. 53, no. 15, p. 6731 - 6739$$n15$$p6731 - 6739$$tMacromolecules$$v53$$x1520-5835$$y2020
000888542 8564_ $$uhttps://juser.fz-juelich.de/record/888542/files/acs.macromol.0c00963-1.pdf$$yRestricted
000888542 8564_ $$uhttps://juser.fz-juelich.de/record/888542/files/zorn_105.pdf$$yPublished on 2020-07-27. Available in OpenAccess from 2021-07-27.
000888542 909CO $$ooai:juser.fz-juelich.de:888542$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000888542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b0$$kFZJ
000888542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b2$$kFZJ
000888542 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000888542 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x1
000888542 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000888542 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x3
000888542 9141_ $$y2020
000888542 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888542 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2018$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2018$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000888542 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000888542 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000888542 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000888542 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000888542 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000888542 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000888542 9801_ $$aFullTexts
000888542 980__ $$ajournal
000888542 980__ $$aVDB
000888542 980__ $$aUNRESTRICTED
000888542 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000888542 980__ $$aI:(DE-Juel1)IBI-8-20200312
000888542 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000888542 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000888542 981__ $$aI:(DE-Juel1)JCNS-1-20110106