001     888542
005     20240619092045.0
024 7 _ |a 10.1021/acs.macromol.0c00963
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a 2128/26623
|2 Handle
024 7 _ |a altmetric:86660999
|2 altmetric
024 7 _ |a WOS:000562138100059
|2 WOS
037 _ _ |a FZJ-2020-05006
082 _ _ |a 540
100 1 _ |a Zorn, Reiner
|0 P:(DE-Juel1)131067
|b 0
245 _ _ |a Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609252736_9888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quasielastic neutron scattering by employing a combination of time-of-flight and backscattering techniques is carried out to explore the molecular mobility of a polymer of intrinsic microporosity (PIM-1) on microscopic timescales in comparison with a high-performance polyimide. Molecular fluctuations can change the structure of the temporary network of micropores and open or close pathways for gas molecules. Therefore, the investigation might help to understand the selectivity of PIMs in gas separation processes. The performed neutron scattering experiments provide evidence for a low-temperature relaxation process, which was assigned to methyl group rotation. This methyl group rotation was analyzed in terms of jump diffusion in a threefold potential. The analysis results in a fraction of methyl groups, which are immobilized. For PIM-1, it was found that the fraction of immobilized methyl groups decreases with increasing temperature up to 350 K. At higher temperatures, the number of immobilized methyl group increases gain due to an underlying relaxation process. This motional process on a somewhat larger length scale might lead to a reversible structural rearrangement, which partially hinders the strongly localized methyl group rotation. In addition, it was found that the activation energies for the methyl group rotation for PIM-1 and the polyimide are significantly higher than that for conventional polymers.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 1
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 3
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPHERES: Backscattering spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)SPHERES-20140101
|5 EXP:(DE-MLZ)SPHERES-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e TOFTOF: Cold neutron time-of-flight spectrometer
|f NL2au
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)TOF-TOF-20140101
|5 EXP:(DE-MLZ)TOF-TOF-20140101
|6 EXP:(DE-MLZ)NL2au-20140101
|x 1
700 1 _ |a Lohstroh, Wiebke
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zamponi, Michaela
|0 P:(DE-Juel1)131056
|b 2
700 1 _ |a Harrison, Wayne J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Budd, Peter M.
|0 0000-0003-3606-1158
|b 4
700 1 _ |a Böhning, Martin
|0 0000-0001-9753-345X
|b 5
700 1 _ |a Schönhals, Andreas
|0 0000-0003-4330-9107
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.macromol.0c00963
|g Vol. 53, no. 15, p. 6731 - 6739
|0 PERI:(DE-600)1491942-4
|n 15
|p 6731 - 6739
|t Macromolecules
|v 53
|y 2020
|x 1520-5835
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/888542/files/acs.macromol.0c00963-1.pdf
856 4 _ |y Published on 2020-07-27. Available in OpenAccess from 2021-07-27.
|u https://juser.fz-juelich.de/record/888542/files/zorn_105.pdf
909 C O |o oai:juser.fz-juelich.de:888542
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131056
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Functional Macromolecules and Complexes
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF3-6G15
|x 3
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|l Großgeräte: Materie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-09-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACROMOLECULES : 2018
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOLECULES : 2018
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-8-20200312
|k IBI-8
|l Neutronenstreuung und biologische Materie
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)IBI-8-20200312
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21