000888551 001__ 888551
000888551 005__ 20220111142648.0
000888551 0247_ $$2doi$$a10.1515/hsz-2020-0293
000888551 0247_ $$2ISSN$$a1431-6730
000888551 0247_ $$2ISSN$$a1437-4315
000888551 0247_ $$2Handle$$a2128/27124
000888551 0247_ $$2pmid$$a33544503
000888551 0247_ $$2WOS$$aWOS:000620176300008
000888551 037__ $$aFZJ-2020-05015
000888551 082__ $$a570
000888551 1001_ $$0P:(DE-HGF)0$$aBarbarino, Frederik$$b0
000888551 245__ $$aTargeting spectrin redox switches to regulate the mechanoproperties of red blood cells
000888551 260__ $$aBerlin [u.a.]$$bde Gruyter$$c2021
000888551 3367_ $$2DRIVER$$aarticle
000888551 3367_ $$2DataCite$$aOutput Types/Journal article
000888551 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839310_25112
000888551 3367_ $$2BibTeX$$aARTICLE
000888551 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888551 3367_ $$00$$2EndNote$$aJournal Article
000888551 520__ $$aThe mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.
000888551 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000888551 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000888551 588__ $$aDataset connected to CrossRef
000888551 7001_ $$0P:(DE-HGF)0$$aWäschenbach, Lucas$$b1
000888551 7001_ $$0P:(DE-HGF)0$$aCavalho-Lemos, Virginia$$b2
000888551 7001_ $$0P:(DE-HGF)0$$aDillenberger, Melissa$$b3
000888551 7001_ $$0P:(DE-HGF)0$$aBecker, Katja$$b4
000888551 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b5$$eCorresponding author$$ufzj
000888551 7001_ $$0P:(DE-HGF)0$$aCortese-Krott, Miriam M.$$b6$$eCorresponding author
000888551 773__ $$0PERI:(DE-600)1466062-3$$a10.1515/hsz-2020-0293$$gVol. 0, no. 0$$n3$$p317–331$$tBiological chemistry$$v402$$x1437-4315$$y2021
000888551 8564_ $$uhttps://juser.fz-juelich.de/record/888551/files/10.1515_hsz-2020-0293.pdf$$yOpenAccess
000888551 8564_ $$uhttps://juser.fz-juelich.de/record/888551/files/Review%20Biol%20Chem_Rev2_final.pdf$$yOpenAccess
000888551 909CO $$ooai:juser.fz-juelich.de:888551$$popenaire$$popen_access$$pdnbdelivery$$pdriver$$pVDB
000888551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b5$$kFZJ
000888551 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000888551 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888551 9141_ $$y2021
000888551 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL CHEM : 2018$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888551 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000888551 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000888551 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888551 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-23$$wger
000888551 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000888551 920__ $$lyes
000888551 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000888551 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000888551 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000888551 980__ $$ajournal
000888551 980__ $$aVDB
000888551 980__ $$aI:(DE-Juel1)JSC-20090406
000888551 980__ $$aI:(DE-Juel1)NIC-20090406
000888551 980__ $$aI:(DE-Juel1)IBI-7-20200312
000888551 980__ $$aUNRESTRICTED
000888551 9801_ $$aFullTexts