000888556 001__ 888556
000888556 005__ 20230522110536.0
000888556 0247_ $$2doi$$a10.1021/acsanm.0c02241
000888556 0247_ $$2Handle$$a2128/26400
000888556 0247_ $$2altmetric$$aaltmetric:92707523
000888556 0247_ $$2WOS$$aWOS:000595546500051
000888556 037__ $$aFZJ-2020-05020
000888556 041__ $$aEnglish
000888556 082__ $$a540
000888556 1001_ $$0P:(DE-Juel1)172012$$aJansen, Marvin Marco$$b0$$eCorresponding author$$ufzj
000888556 245__ $$aPhase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Disks
000888556 260__ $$aWashington, DC$$bACS Publications$$c2020
000888556 3367_ $$2DRIVER$$aarticle
000888556 3367_ $$2DataCite$$aOutput Types/Journal article
000888556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607419622_756
000888556 3367_ $$2BibTeX$$aARTICLE
000888556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888556 3367_ $$00$$2EndNote$$aJournal Article
000888556 520__ $$aThe control of the crystal phase in self-catalyzed nanowires (NWs) is one of the central remaining open challenges in the research field of III/V semiconductor NWs. While several groups analyzed and revealed the growth dynamics, no experimental growth scheme has been verified yet, which reproducibly ensures the phase purity of binary self-catalyzed grown NWs. Here, we demonstrate the advanced control of self-catalyzed molecular beam epitaxy of GaAs NWs with up to a grade of 100% wurtzite (WZ) phase purity. The evolution of the most important properties during the growth, namely, the contact angle of the Ga droplet, the NW length, and the diameter is analyzed by scanning electron microscopy and transmission electron microscopy. Based on these results, we developed a comprehensive NW growth model for calculating the time-dependent evolution of the Ga droplet contact angle. Using this model, the Ga flux was dynamically modified during the growth to control and stabilize the contact angle in a certain range favoring the growth of phase-pure GaAs NWs. Although focusing on the self-catalyzed growth of WZ GaAs NWs, our model is also applicable to achieve phase-pure zinc blende (ZB) NWs and can be easily generalized to other III/V compounds. The self-catalyzed growth of such NWs may pave the way for substantial improvement of GaAs NW laser devices, the controlled growth of WZ/ZB quantum disks, and novel heterostructured core/multishell NW systems with a pristine crystalline order.
000888556 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000888556 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000888556 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
000888556 536__ $$0G:(GEPRIS)337456818$$aDFG project 337456818 - Entwicklung von Spin-Qubit Bauelementen aus ZnSe/$$c337456818$$x3
000888556 588__ $$aDataset connected to CrossRef
000888556 7001_ $$0P:(DE-Juel1)169951$$aPerla, Pujitha$$b1$$ufzj
000888556 7001_ $$0P:(DE-Juel1)177623$$aKaladzhian, Mane$$b2$$ufzj
000888556 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b3
000888556 7001_ $$0P:(DE-Juel1)166417$$aJanssen, Johanna$$b4
000888556 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b5$$ufzj
000888556 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail I.$$b6
000888556 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
000888556 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b8$$eCorresponding author
000888556 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.0c02241$$gVol. 3, no. 11, p. 11037 - 11047$$n11$$p11037 - 11047$$tACS applied nano materials$$v3$$x2574-0970$$y2020
000888556 8564_ $$uhttps://juser.fz-juelich.de/record/888556/files/acsanm.0c02241.pdf
000888556 8564_ $$uhttps://juser.fz-juelich.de/record/888556/files/manuscript_revision.pdf$$yPublished on 2020-10-19. Available in OpenAccess from 2021-10-19.$$zStatID:(DE-HGF)0510
000888556 909CO $$ooai:juser.fz-juelich.de:888556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172012$$aForschungszentrum Jülich$$b0$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169951$$aForschungszentrum Jülich$$b1$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177623$$aForschungszentrum Jülich$$b2$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b3$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166417$$aForschungszentrum Jülich$$b4$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b5$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b6$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
000888556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b8$$kFZJ
000888556 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000888556 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000888556 9141_ $$y2020
000888556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000888556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000888556 920__ $$lyes
000888556 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000888556 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000888556 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000888556 980__ $$ajournal
000888556 980__ $$aVDB
000888556 980__ $$aUNRESTRICTED
000888556 980__ $$aI:(DE-Juel1)PGI-9-20110106
000888556 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000888556 980__ $$aI:(DE-Juel1)PGI-10-20170113
000888556 9801_ $$aFullTexts