001     888556
005     20230522110536.0
024 7 _ |a 10.1021/acsanm.0c02241
|2 doi
024 7 _ |a 2128/26400
|2 Handle
024 7 _ |a altmetric:92707523
|2 altmetric
024 7 _ |a WOS:000595546500051
|2 WOS
037 _ _ |a FZJ-2020-05020
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Jansen, Marvin Marco
|0 P:(DE-Juel1)172012
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Phase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Disks
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607419622_756
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The control of the crystal phase in self-catalyzed nanowires (NWs) is one of the central remaining open challenges in the research field of III/V semiconductor NWs. While several groups analyzed and revealed the growth dynamics, no experimental growth scheme has been verified yet, which reproducibly ensures the phase purity of binary self-catalyzed grown NWs. Here, we demonstrate the advanced control of self-catalyzed molecular beam epitaxy of GaAs NWs with up to a grade of 100% wurtzite (WZ) phase purity. The evolution of the most important properties during the growth, namely, the contact angle of the Ga droplet, the NW length, and the diameter is analyzed by scanning electron microscopy and transmission electron microscopy. Based on these results, we developed a comprehensive NW growth model for calculating the time-dependent evolution of the Ga droplet contact angle. Using this model, the Ga flux was dynamically modified during the growth to control and stabilize the contact angle in a certain range favoring the growth of phase-pure GaAs NWs. Although focusing on the self-catalyzed growth of WZ GaAs NWs, our model is also applicable to achieve phase-pure zinc blende (ZB) NWs and can be easily generalized to other III/V compounds. The self-catalyzed growth of such NWs may pave the way for substantial improvement of GaAs NW laser devices, the controlled growth of WZ/ZB quantum disks, and novel heterostructured core/multishell NW systems with a pristine crystalline order.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 2
536 _ _ |a DFG project 337456818 - Entwicklung von Spin-Qubit Bauelementen aus ZnSe/
|0 G:(GEPRIS)337456818
|c 337456818
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Perla, Pujitha
|0 P:(DE-Juel1)169951
|b 1
|u fzj
700 1 _ |a Kaladzhian, Mane
|0 P:(DE-Juel1)177623
|b 2
|u fzj
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 3
700 1 _ |a Janssen, Johanna
|0 P:(DE-Juel1)166417
|b 4
700 1 _ |a Luysberg, Martina
|0 P:(DE-Juel1)130811
|b 5
|u fzj
700 1 _ |a Lepsa, Mihail I.
|0 P:(DE-Juel1)128603
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
|u fzj
700 1 _ |a Pawlis, Alexander
|0 P:(DE-Juel1)166158
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acsanm.0c02241
|g Vol. 3, no. 11, p. 11037 - 11047
|0 PERI:(DE-600)2916552-0
|n 11
|p 11037 - 11047
|t ACS applied nano materials
|v 3
|y 2020
|x 2574-0970
856 4 _ |u https://juser.fz-juelich.de/record/888556/files/acsanm.0c02241.pdf
856 4 _ |y Published on 2020-10-19. Available in OpenAccess from 2021-10-19.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/888556/files/manuscript_revision.pdf
909 C O |o oai:juser.fz-juelich.de:888556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128603
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166158
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21