000888563 001__ 888563
000888563 005__ 20220224143420.0
000888563 0247_ $$2doi$$a10.1007/s11104-020-04754-3
000888563 0247_ $$2ISSN$$a0032-079X
000888563 0247_ $$2ISSN$$a1573-5036
000888563 0247_ $$2Handle$$a2128/27152
000888563 0247_ $$2WOS$$aWOS:000625967800001
000888563 037__ $$aFZJ-2020-05027
000888563 082__ $$a580
000888563 1001_ $$0P:(DE-HGF)0$$aNgaba, Mbezele Junior Yannick$$b0
000888563 245__ $$aStable isotopic signatures of carbon and nitrogen in soil aggregates following the conversion of natural forests to managed plantations in eastern China
000888563 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000888563 3367_ $$2DRIVER$$aarticle
000888563 3367_ $$2DataCite$$aOutput Types/Journal article
000888563 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645695332_20952
000888563 3367_ $$2BibTeX$$aARTICLE
000888563 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888563 3367_ $$00$$2EndNote$$aJournal Article
000888563 520__ $$aBackground and aimsLand cover change (LCC) from natural forest (NF) to plantations (PF) has occurred worldwide over the past several decades. However, the different LCC effects on soil aggregate C and N turnover in various climatic zones remain uncertain.MethodsSoil samples were taken from both NF and PF at five sites along an approximately 4200 km north-south transect in eastern China. We measured soil aggregate C and N concentrations, and δ13C and δ15N.ResultsThe soil aggregate distribution is similar between NF and PF, except that the mass proportion of microaggregate is lower in NF. The impacts of LCC on soil C and N concentrations, and δ13C and δ15N vary among five climate zones. The changes in soil aggregate C and N concentrations and δ15N induced by LCC show nonlinear relationships with climatic factors (i.e., MAT and MAP), and there is a linear relationship between soil aggregate Δδ13C (calculated by subtracting PF from NF) and MAT and MAP. The soil aggregate C and N concentrations, and δ13C and δ15N show clear trends along the climatic transect. In addition, the impacts of LCC are more obvious in topsoil than in subsoil.ConclusionOur findings highlight that the impacts of LCC on soil C and N concentrations are related to climatic factors. Specifically, that the increased decomposition of soil C in PF than NF can be compensated by higher C inputs with increasing MAT and MAP.
000888563 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000888563 588__ $$aDataset connected to CrossRef
000888563 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b1
000888563 7001_ $$0P:(DE-HGF)0$$aHu, Ya-Lin$$b2$$eCorresponding author
000888563 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-020-04754-3$$p371–385$$tPlant and soil$$v459$$x1573-5036$$y2021
000888563 8564_ $$uhttps://juser.fz-juelich.de/record/888563/files/NGABA%20et%20al.%202020-plant%20soil.pdf$$yPublished on 2020-11-24. Available in OpenAccess from 2021-11-24.
000888563 8564_ $$uhttps://juser.fz-juelich.de/record/888563/files/Ngaba2021_Article_StableIsotopicSignaturesOfCarb.pdf$$yRestricted
000888563 909CO $$ooai:juser.fz-juelich.de:888563$$pdnbdelivery$$popenaire$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access
000888563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b1$$kFZJ
000888563 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000888563 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000888563 9141_ $$y2021
000888563 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888563 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-09-05$$wger
000888563 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2018$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000888563 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000888563 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000888563 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000888563 920__ $$lyes
000888563 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000888563 980__ $$ajournal
000888563 980__ $$aVDB
000888563 980__ $$aI:(DE-Juel1)IBG-3-20101118
000888563 980__ $$aUNRESTRICTED
000888563 9801_ $$aFullTexts